Function reference
-
hrf()
- hemodynamic regressor specification function for model formulas.
-
hrf_gamma()
- Gamma HRF (hemodynamic response function)
-
hrf_gaussian()
- Gaussian HRF (hemodynamic response function)
-
hrf_spmg1()
- hrf_spmg1
-
hrf_time()
- HRF (hemodynamic response function) as a linear function of time
-
hrf_inv_logit()
- hrf_inv_logit
-
hrf_mexhat()
- Mexican Hat HRF (hemodynamic response function)
-
hrf_sine()
- hrf_sine
-
hrf_half_cosine()
- Hemodynamic Response Function with Half-Cosine Basis
-
hrf_bspline()
- B-spline HRF (hemodynamic response function)
-
gen_hrf()
- Construct an HRF Instance
-
gen_hrf_blocked()
hrf_blocked()
- Generate a Blocked HRF Function
-
gen_hrf_lagged()
hrf_lagged()
- Generate a Lagged HRF Function
-
hrf_toeplitz()
- HRF Toeplitz Matrix
-
gen_hrf_set()
- Generate an HRF Basis Set
-
gen_empirical_hrf()
- Generate an Empirical Hemodynamic Response Function
-
afni_hrf()
- construct an native AFNI hrf specification for '3dDeconvolve' with the 'stim_times' argument.
-
hrf_smoothing_kernel()
- Compute an HRF smoothing kernel
-
BSpline()
- B-spline basis
-
Ident()
- Ident
-
Poly()
- Polynomila basis
regressor-related functions
functions related to creating, evaluating, and querying regression-related building blocks
-
regressor()
- construct a regressor object
-
evaluate()
- evaluate a function over a sampling grid
-
onsets()
- get event onsets of a variable
-
nbasis()
- return number of basis functions associated with hrf.
-
durations()
- get event durations of a variable
-
global_onsets()
- return the "global" onsets of an object.
-
global_onsets(<sampling_frame>)
- Compute global onsets from a sampling_frame
-
amplitudes()
- get amplitude vector
-
samples()
- extract samples
-
samples(<sampling_frame>)
- Extract samples from a sampling_frame
-
blockids()
- get the block indices
-
blocklens()
- get block lengths
-
sampling_frame()
- Construct a sampling_frame
-
trialwise()
- trialwise
-
afni_trialwise()
- construct an native AFNI hrf specification for '3dDeconvolve' and individually modulated events using the 'stim_times_IM' argument.
-
null_regressor()
- null_regressor
-
single_trial_regressor()
- single_trial_regressor
-
convolve()
- convolve
-
convolve(<event_term>)
- Convolve an event-related design matrix with an HRF.
-
convolve_design()
- Convolve HRF with Design Matrix
-
convolve_block()
- Convolve hemodynamic response with a block duration
-
shift()
- Shift a time series object
-
event_model()
- Construct an event model
-
event_model(<list>)
- event_model.list
-
event_model(<formula>)
- event_model.formula
-
event_table()
- event_table
-
baseline_model()
- construct a baseline model to model noise and other non-event-related sources of variance
-
baseline()
- Create a model specification for modeling low-frequency drift in fmri time series.
-
baseline_terms()
- baseline_terms
-
baseline_term()
- baseline_term
-
block()
- a block variable, which is constant over the span of a scanning run
-
construct()
- construct
-
event_factor()
- Create a categorical event sequence from a factor
-
event_term()
- Create an event model term from a named list of variables.
-
event_basis()
- Create an event set from a ParametricBasis object
-
event_variable()
- Create a continuous valued event sequence from a numeric vector
-
event_matrix()
- Create a continuous valued event set from a matrix
-
event_terms()
- event_terms
-
matrix_term()
- matrix_term
-
design_matrix()
- design_matrix
-
conditions()
- Conditions
-
cells()
- The experimental cells of a design
-
columns()
- columns
-
levels()
- levels
-
elements()
- elements
-
term_matrices(<fmri_model>)
- Construct term matrices for an fMRI model
-
term_names()
- term_names
-
parent_terms()
- parent_terms
-
shortnames()
- extract short shortnames of variable
-
longnames()
longnames()
- extract long names of variable
-
is_continuous()
- is_continuous
-
is_categorical()
- is_categorical
-
term_indices()
- term_indices
-
term_matrices()
- term_matrices
-
block_term()
- block_term
-
nuisance()
- nuisance
-
covariate()
- Construct a Covariate Term
-
contrast()
- Contrast Specification
-
contrast_set()
- Create a Set of Contrasts
-
contrast_weights()
- contrast_weights
-
contrast_weights(<unit_contrast_spec>)
- Unit Contrast Weights
-
contrast_weights(<poly_contrast_spec>)
- Polynomial Contrast Weights
-
pair_contrast()
- Pair Contrast
-
pairwise_contrasts()
- Pairwise Contrasts
-
unit_contrast()
- Unit Contrast
-
poly_contrast()
- Polynomial Contrast
-
one_against_all_contrast()
- One Against All Contrast
-
Fcontrasts()
- Fcontrasts
-
Fcontrasts(<event_term>)
- Compute F-contrasts for Event Term
-
beta_stats()
- Beta Statistics for Linear Model
-
fit_contrasts()
- Fit Contrasts for Linear Model
-
estcon()
- estcon
-
fmri_dataset()
- Create an fMRI Dataset Object from a Set of Scans
-
latent_dataset()
- Create a Latent Dataset Object
-
fmri_mem_dataset()
- Create an fMRI Memory Dataset Object
-
matrix_dataset()
- Create a Matrix Dataset Object
-
get_data()
- get_data
-
get_mask()
- get_mask
-
data_chunks()
- return a set of data chunks
-
data_chunks(<fmri_file_dataset>)
- Create Data Chunks for fmri_file_dataset Objects
-
data_chunks(<fmri_mem_dataset>)
- Create Data Chunks for fmri_mem_dataset Objects
-
data_chunks(<matrix_dataset>)
- Create Data Chunks for matrix_dataset Objects
-
fmri_model()
- Construct an fMRI regression model
-
fmri_lm()
- Fit a linear regression model for fMRI data analysis
-
fmri_latent_lm()
- Fast fMRI Regression Model Estimation from a Latent Component Dataset
-
fmri_rlm()
- fmri_rlm
-
afni_lm()
- Set up an fMRI linear model for AFNI's 3dDeconvolve
-
fmri_lm_fit()
- Fit an fMRI linear regression model with a specified fitting strategy
-
estimate_betas()
- estimate trialwise beta coefficients for a dataset
-
estimate_betas(<fmri_dataset>)
- #' @export estimate_betas.fmri_mem_dataset <- function(x,fixed=NULL, ran, block, method=c("mixed", "pls", "pls_searchlight", "pls_global", "ols"), basemod=NULL, radius=8, niter=8, ncomp=4, lambda=.01,...) estimate_betas.fmri_dataset(x,fixed,ran,block, method, basemod, radius, niter,ncomp, lambda,...) Estimate betas for an fMRI dataset
-
estimate_betas(<matrix_dataset>)
- Estimate betas for a matrix dataset
-
estimate_hrf()
- Estimate hemodynamic response function (HRF) using Generalized Additive Models (GAMs)
-
gen_afni_lm()
- generate an AFNI linear model command from a configuration file
-
p_values()
- p_values
-
standard_error()
- standard_error
-
standard_error(<fmri_latent_lm>)
- Calculate the standard error for an fmri_latent_lm object
-
run(<afni_lm_spec>)
- Run an afni_lm_spec object
-
chunkwise_lm()
- estimate a linear model sequentially for each "chunk" (a matrix of time-series) of data
-
stats()
- stats
-
split_by_block()
- split_by_block
-
split_onsets()
- split an onset vector into a list
-
split_onsets(<event_term>)
- Split onsets of an event_term object
-
plot(<regressor>)
- plot a regressor object
-
design_plot()
- Design Plot for fMRI Model
-
read_fmri_config()
- read a basic fMRI configuration file
-
fmrireg
- fmrireg: regresssion tools for fMRI data
-
despike()
- Despike Time Series Data
-
soft_threshold()
- Soft-threshold function
-
print(<fmri_betas>)
- Pretty print method for fmri_betas objects
-
plot(<event_model>)
- Plot an event_model object
-
evaluate(<hrfspec>)
- evaluate.hrfspec
-
evaluate(<HRF>)
- evaluate.HRF
-
multiresponse_bootstrap_lm()
- Multiresponse Bootstrap Linear Model
-
run()
- run