Skip to contents

All functions

ar_parameters()
Extract Estimated AR Parameters from fmri_lm Fit
as.array(<NeuroVec>)
Coerce NeuroVec to base array
autoplot(<Reg>)
Autoplot method for Reg objects
blockids(<event_model>)
Block IDs for event_model
coef(<fmri_meta>)
Extract Coefficients from Meta-Analysis
coef_image()
Extract Image/Volume for Coefficient
coef_image(<fmri_ttest_fit>)
Extract Coefficient Image from fmri_ttest_fit
columns()
Extract Column Names or Identifiers
conditions(<convolved_term>)
Visualize the entire design matrix as a heatmap
contrast()
Contrast generic
contrast(<fmri_meta>)
Apply Contrast to Meta-Analysis Results
contrast_set()
Create a contrast set
correlation_map()
correlation_map
correlation_map(<fmri_model>)
correlation_map.fmri_model
create_3d_blocks()
Create 3D Blocks for Voxelwise Analysis
create_design_matrix_from_benchmark()
Create Design Matrix from Benchmark Dataset
design_map(<fmri_model>)
Heatmap visualization of the combined fmri_model design matrix
design_matrix(<convolved_term>)
Design Matrix for Convolved Terms
design_matrix(<fmri_lm>)
Design Matrix Method for fmri_lm Objects
design_matrix(<fmri_model>)
Design Matrix for fMRI Models
design_plot()
Design Plot for fMRI Model
.resample_param()
Resample parameter vector with specified distribution
estimate()
Deprecated helper: estimate()
estimate_betas()
Estimate Beta Coefficients for fMRI Data
estimate_betas(<fmri_dataset>)
Estimate betas using various regression methods
estimate_betas(<matrix_dataset>)
Estimate betas for a matrix dataset
estimate_hrf()
Estimate hemodynamic response function (HRF) using Generalized Additive Models (GAMs)
evaluate_method_performance()
Evaluate Method Performance on Benchmark Dataset
event_table(<convolved_term>)
Extract event table from convolved term
extract_csv_data()
Extract Data for Meta-Analysis from CSV
fit_contrasts()
Fit Contrasts
fit_contrasts(<default>)
Fit Contrasts for Linear Model (Default Method)
fit_contrasts(<fmri_lm>)
Fit Contrasts for fMRI Linear Model Objects
fitted_hrf()
fitted_hrf
fitted_hrf(<fmri_lm>)
Compute Fitted Hemodynamic Response Functions for an fmri_lm Object
flip_sign()
Flip Sign of Coefficients
fmri_benchmark_datasets
Benchmark fMRI datasets
fmri_latent_lm()
Fast fMRI Regression Model Estimation from a Latent Component Dataset
fmri_lm()
Fit a Linear Regression Model for fMRI Data Analysis
fmri_lm_control()
Configuration for fmri_lm fitting
fmri_meta()
Fit Group-Level Meta-Analysis
fmri_meta_fit()
Fit Meta-Analysis Models
fmri_meta_fit_contrasts()
Fit Meta-Analysis Models with Exact Contrasts
fmri_meta_fit_cov()
Fit Meta-Analysis and return packed covariance per voxel
fmri_meta_fit_extended()
Extended Meta-Analysis Fit with Voxelwise Covariate
fmri_model()
Construct an fMRI Regression Model
fmri_ols_fit()
OLS Fit with Optional Voxelwise Covariate
fmri_rlm()
Fit a Robust Linear Model for fMRI Data Analysis
fmri_ttest()
fmrireg t-tests for Group Analysis
generate_interaction_contrast() generate_main_effect_contrast()
Fast factorial contrast generators
get_benchmark_summary()
Get Benchmark Dataset Summary
get_contrasts()
Get Available Contrasts
get_covariates()
Get Covariates
get_rois()
Get Available ROIs
get_subjects()
Get Subject IDs
glm_lss()
GLM LSS Estimation Convenience Function (Single Trial Estimation)
glm_ols()
GLM OLS Estimation Convenience Function
group_data()
Create Group Dataset for Meta-Analysis
group_data_from_csv()
Create Group Dataset from CSV File or Data Frame
group_data_from_fmrilm()
Create Group Dataset from fmri_lm Objects
group_data_from_h5()
Create Group Dataset from HDF5 Files
group_data_from_nifti()
Create Group Dataset from NIfTI Files
hrf_smoothing_kernel()
Compute an HRF smoothing kernel
list_benchmark_datasets()
List Available Benchmark Datasets
load_benchmark_dataset()
Load fMRI Benchmark Datasets
longnames()
Extract Long Names of Variable Levels
lowrank_control()
Low-rank / sketch controls for fast GLM
meta_effective_n()
Compute Effective Sample Size for Meta-Analysis
meta_fit_vcov_cpp()
Meta-regression with ONE voxelwise covariate
mixed_solve_cpp()
Mixed Model Solver using Rcpp and roptim
n_subjects()
Extract Number of Subjects
ols_t_cpp()
OLS t-test / ANCOVA across features
ols_t_vcov_cpp()
OLS with ONE voxelwise covariate
p_values()
Extract P-values from a Model Fit
paired_diff_block()
Helper Functions for fmri_ttest
print(<fmri_model>) print(<fmri_lm>) print(<fmri_rlm>)
Print an fmri_lm_result object
print(<fmri_meta>)
Print Meta-Analysis Results
print(<fmri_ttest_fit>)
Print method for fmri_ttest_fit
print(<group_data>)
Print Group Data Object
print(<spatial_fdr_result>)
Print Spatial FDR Results
pvalues()
Compute P-values from Meta-Analysis
r_to_z()
Convert Correlation to Fisher's Z
read_h5_full()
Read All Data from HDF5 Files
read_nifti_full()
Read All Data from NIfTI Files
se()
Extract Standard Errors from Meta-Analysis
shortnames()
Short Names
simulate_bold_signal()
Simulate fMRI Time Series
simulate_fmri_matrix()
Simulate fMRI Time Courses, Return Shared Onsets + Column-Specific Amplitudes/Durations
simulate_noise_vector()
Simulate fMRI Noise
simulate_simple_dataset()
Simulate Complete fMRI Dataset
spatial_fdr()
Spatially-Aware Multiple Comparisons Correction
standard_error()
Extract Standard Errors from a Model Fit
stats()
Extract Test Statistics from a Model Fit
summary(<fmri_meta>)
Summary of Meta-Analysis Results
summary(<fmri_ttest_fit>)
Summary method for fmri_ttest_fit
summary(<group_data>)
Summary of Group Data Object
summary(<spatial_fdr_result>)
Summary of Spatial FDR Results
t_to_beta_se()
Convert t-statistics to Effect Sizes
t_to_d()
Convert T-statistics to Effect Sizes and Variances
term_matrices(<fmri_model>)
Extract term matrices from fmri_model
tidy()
Tidy generic
tidy(<fmri_meta>)
Tidy Meta-Analysis Results
welch_t_cpp()
Welch two-sample t-test across features
write_results()
Write Results from fMRI Analysis
write_results(<fmri_lm>)
Write Results from fMRI Linear Model
write_results(<fmri_meta>)
Write Meta-Analysis Results
z_to_r()
Back-transform Fisher's Z to Correlation
zscores()
Compute Z-scores from Meta-Analysis