Package index
- 
          ar_parameters()
- Extract Estimated AR Parameters from fmri_lm Fit
- 
          as.array(<NeuroVec>)
- Coerce NeuroVec to base array
- 
          autoplot(<Reg>)
- Autoplot method for Reg objects
- 
          blockids(<event_model>)
- Block IDs for event_model
- 
          coef(<fmri_meta>)
- Extract Coefficients from Meta-Analysis
- 
          coef_image()
- Extract Image/Volume for Coefficient
- 
          coef_image(<fmri_ttest_fit>)
- Extract Coefficient Image from fmri_ttest_fit
- 
          columns()
- Extract Column Names or Identifiers
- 
          conditions(<convolved_term>)
- Visualize the entire design matrix as a heatmap
- 
          contrast()
- Contrast generic
- 
          contrast(<fmri_meta>)
- Apply Contrast to Meta-Analysis Results
- 
          contrast_set()
- Create a contrast set
- 
          correlation_map()
- correlation_map
- 
          correlation_map(<fmri_model>)
- correlation_map.fmri_model
- 
          create_3d_blocks()
- Create 3D Blocks for Voxelwise Analysis
- 
          create_design_matrix_from_benchmark()
- Create Design Matrix from Benchmark Dataset
- 
          design_map(<fmri_model>)
- Heatmap visualization of the combined fmri_model design matrix
- 
          design_matrix(<convolved_term>)
- Design Matrix for Convolved Terms
- 
          design_matrix(<fmri_lm>)
- Design Matrix Method for fmri_lm Objects
- 
          design_matrix(<fmri_model>)
- Design Matrix for fMRI Models
- 
          design_plot()
- Design Plot for fMRI Model
- 
          .resample_param()
- Resample parameter vector with specified distribution
- 
          estimate()
- Deprecated helper: estimate()
- 
          estimate_betas()
- Estimate Beta Coefficients for fMRI Data
- 
          estimate_betas(<fmri_dataset>)
- Estimate betas using various regression methods
- 
          estimate_betas(<matrix_dataset>)
- Estimate betas for a matrix dataset
- 
          estimate_hrf()
- Estimate hemodynamic response function (HRF) using Generalized Additive Models (GAMs)
- 
          evaluate_method_performance()
- Evaluate Method Performance on Benchmark Dataset
- 
          event_table(<convolved_term>)
- Extract event table from convolved term
- 
          extract_csv_data()
- Extract Data for Meta-Analysis from CSV
- 
          fit_contrasts()
- Fit Contrasts
- 
          fit_contrasts(<default>)
- Fit Contrasts for Linear Model (Default Method)
- 
          fit_contrasts(<fmri_lm>)
- Fit Contrasts for fMRI Linear Model Objects
- 
          fitted_hrf()
- fitted_hrf
- 
          fitted_hrf(<fmri_lm>)
- Compute Fitted Hemodynamic Response Functions for an fmri_lm Object
- 
          flip_sign()
- Flip Sign of Coefficients
- 
          fmri_benchmark_datasets
- Benchmark fMRI datasets
- 
          fmri_latent_lm()
- Fast fMRI Regression Model Estimation from a Latent Component Dataset
- 
          fmri_lm()
- Fit a Linear Regression Model for fMRI Data Analysis
- 
          fmri_lm_control()
- Configuration for fmri_lm fitting
- 
          fmri_meta()
- Fit Group-Level Meta-Analysis
- 
          fmri_meta_fit()
- Fit Meta-Analysis Models
- 
          fmri_meta_fit_contrasts()
- Fit Meta-Analysis Models with Exact Contrasts
- 
          fmri_meta_fit_cov()
- Fit Meta-Analysis and return packed covariance per voxel
- 
          fmri_meta_fit_extended()
- Extended Meta-Analysis Fit with Voxelwise Covariate
- 
          fmri_model()
- Construct an fMRI Regression Model
- 
          fmri_ols_fit()
- OLS Fit with Optional Voxelwise Covariate
- 
          fmri_rlm()
- Fit a Robust Linear Model for fMRI Data Analysis
- 
          fmri_ttest()
- fmrireg t-tests for Group Analysis
- 
          generate_interaction_contrast()generate_main_effect_contrast()
- Fast factorial contrast generators
- 
          get_benchmark_summary()
- Get Benchmark Dataset Summary
- 
          get_contrasts()
- Get Available Contrasts
- 
          get_covariates()
- Get Covariates
- 
          get_rois()
- Get Available ROIs
- 
          get_subjects()
- Get Subject IDs
- 
          glm_lss()
- GLM LSS Estimation Convenience Function (Single Trial Estimation)
- 
          glm_ols()
- GLM OLS Estimation Convenience Function
- 
          group_data()
- Create Group Dataset for Meta-Analysis
- 
          group_data_from_csv()
- Create Group Dataset from CSV File or Data Frame
- 
          group_data_from_fmrilm()
- Create Group Dataset from fmri_lm Objects
- 
          group_data_from_h5()
- Create Group Dataset from HDF5 Files
- 
          group_data_from_nifti()
- Create Group Dataset from NIfTI Files
- 
          hrf_smoothing_kernel()
- Compute an HRF smoothing kernel
- 
          list_benchmark_datasets()
- List Available Benchmark Datasets
- 
          load_benchmark_dataset()
- Load fMRI Benchmark Datasets
- 
          longnames()
- Extract Long Names of Variable Levels
- 
          lowrank_control()
- Low-rank / sketch controls for fast GLM
- 
          meta_effective_n()
- Compute Effective Sample Size for Meta-Analysis
- 
          meta_fit_vcov_cpp()
- Meta-regression with ONE voxelwise covariate
- 
          mixed_solve_cpp()
- Mixed Model Solver using Rcpp and roptim
- 
          n_subjects()
- Extract Number of Subjects
- 
          ols_t_cpp()
- OLS t-test / ANCOVA across features
- 
          ols_t_vcov_cpp()
- OLS with ONE voxelwise covariate
- 
          p_values()
- Extract P-values from a Model Fit
- 
          paired_diff_block()
- Helper Functions for fmri_ttest
- 
          print(<fmri_model>)print(<fmri_lm>)print(<fmri_rlm>)
- Print an fmri_lm_result object
- 
          print(<fmri_meta>)
- Print Meta-Analysis Results
- 
          print(<fmri_ttest_fit>)
- Print method for fmri_ttest_fit
- 
          print(<group_data>)
- Print Group Data Object
- 
          print(<spatial_fdr_result>)
- Print Spatial FDR Results
- 
          pvalues()
- Compute P-values from Meta-Analysis
- 
          r_to_z()
- Convert Correlation to Fisher's Z
- 
          read_h5_full()
- Read All Data from HDF5 Files
- 
          read_nifti_full()
- Read All Data from NIfTI Files
- 
          se()
- Extract Standard Errors from Meta-Analysis
- 
          shortnames()
- Short Names
- 
          simulate_bold_signal()
- Simulate fMRI Time Series
- 
          simulate_fmri_matrix()
- Simulate fMRI Time Courses, Return Shared Onsets + Column-Specific Amplitudes/Durations
- 
          simulate_noise_vector()
- Simulate fMRI Noise
- 
          simulate_simple_dataset()
- Simulate Complete fMRI Dataset
- 
          spatial_fdr()
- Spatially-Aware Multiple Comparisons Correction
- 
          standard_error()
- Extract Standard Errors from a Model Fit
- 
          stats()
- Extract Test Statistics from a Model Fit
- 
          summary(<fmri_meta>)
- Summary of Meta-Analysis Results
- 
          summary(<fmri_ttest_fit>)
- Summary method for fmri_ttest_fit
- 
          summary(<group_data>)
- Summary of Group Data Object
- 
          summary(<spatial_fdr_result>)
- Summary of Spatial FDR Results
- 
          t_to_beta_se()
- Convert t-statistics to Effect Sizes
- 
          t_to_d()
- Convert T-statistics to Effect Sizes and Variances
- 
          term_matrices(<fmri_model>)
- Extract term matrices from fmri_model
- 
          tidy()
- Tidy generic
- 
          tidy(<fmri_meta>)
- Tidy Meta-Analysis Results
- 
          welch_t_cpp()
- Welch two-sample t-test across features
- 
          write_results()
- Write Results from fMRI Analysis
- 
          write_results(<fmri_lm>)
- Write Results from fMRI Linear Model
- 
          write_results(<fmri_meta>)
- Write Meta-Analysis Results
- 
          z_to_r()
- Back-transform Fisher's Z to Correlation
- 
          zscores()
- Compute Z-scores from Meta-Analysis