Skip to contents

hemodynamic response functions

functions related to hemodynamic response functions

hrf()
hemodynamic regressor specification function for model formulas.
hrf_gamma()
Gamma HRF (hemodynamic response function)
hrf_gaussian()
Gaussian HRF (hemodynamic response function)
hrf_spmg1()
hrf_spmg1
hrf_time()
HRF (hemodynamic response function) as a linear function of time
hrf_inv_logit()
hrf_inv_logit
hrf_mexhat()
Mexican Hat HRF (hemodynamic response function)
hrf_sine()
hrf_sine
hrf_half_cosine()
Hemodynamic Response Function with Half-Cosine Basis
hrf_bspline()
B-spline HRF (hemodynamic response function)
gen_hrf()
Construct an HRF Instance
gen_hrf_blocked() hrf_blocked()
Generate a Blocked HRF Function
gen_hrf_lagged() hrf_lagged()
Generate a Lagged HRF Function
hrf_toeplitz()
HRF Toeplitz Matrix
gen_hrf_set()
Generate an HRF Basis Set
gen_empirical_hrf()
Generate an Empirical Hemodynamic Response Function
afni_hrf()
construct an native AFNI hrf specification for '3dDeconvolve' with the 'stim_times' argument.
hrf_smoothing_kernel()
Compute an HRF smoothing kernel
BSpline()
B-spline basis
Ident()
Ident
Poly()
Polynomila basis

functions related to creating, evaluating, and querying regression-related building blocks

regressor()
construct a regressor object
evaluate()
evaluate a function over a sampling grid
onsets()
get event onsets of a variable
nbasis()
return number of basis functions associated with hrf.
durations()
get event durations of a variable
global_onsets()
return the "global" onsets of an object.
global_onsets(<sampling_frame>)
Compute global onsets from a sampling_frame
amplitudes()
get amplitude vector
samples()
extract samples
samples(<sampling_frame>)
Extract samples from a sampling_frame
blockids()
get the block indices
blocklens()
get block lengths
sampling_frame()
Construct a sampling_frame
trialwise()
trialwise
afni_trialwise()
construct an native AFNI hrf specification for '3dDeconvolve' and individually modulated events using the 'stim_times_IM' argument.
null_regressor()
null_regressor
single_trial_regressor()
single_trial_regressor
convolve()
convolve
convolve(<event_term>)
Convolve an event-related design matrix with an HRF.
convolve_design()
Convolve HRF with Design Matrix
convolve_block()
Convolve hemodynamic response with a block duration
shift()
Shift a time series object

event models

functions for building and querying event models for regression analysis

event_model()
Construct an event model
event_model(<list>)
event_model.list
event_model(<formula>)
event_model.formula
event_table()
event_table
baseline_model()
construct a baseline model to model noise and other non-event-related sources of variance
baseline()
Create a model specification for modeling low-frequency drift in fmri time series.
baseline_terms()
baseline_terms
baseline_term()
baseline_term
block()
a block variable, which is constant over the span of a scanning run
construct()
construct
event_factor()
Create a categorical event sequence from a factor
event_term()
Create an event model term from a named list of variables.
event_basis()
Create an event set from a ParametricBasis object
event_variable()
Create a continuous valued event sequence from a numeric vector
event_matrix()
Create a continuous valued event set from a matrix
event_terms()
event_terms
matrix_term()
matrix_term
design_matrix()
design_matrix
conditions()
Conditions
cells()
The experimental cells of a design
columns()
columns
levels()
levels
elements()
elements
term_matrices(<fmri_model>)
Construct term matrices for an fMRI model
term_names()
term_names
parent_terms()
parent_terms
shortnames()
extract short shortnames of variable
longnames() longnames()
extract long names of variable
is_continuous()
is_continuous
is_categorical()
is_categorical
term_indices()
term_indices
term_matrices()
term_matrices
block_term()
block_term
nuisance()
nuisance
covariate()
Construct a Covariate Term

contrasts

functions for creating statistical contrasts

contrast()
Contrast Specification
contrast_set()
Create a Set of Contrasts
contrast_weights()
contrast_weights
contrast_weights(<unit_contrast_spec>)
Unit Contrast Weights
contrast_weights(<poly_contrast_spec>)
Polynomial Contrast Weights
pair_contrast()
Pair Contrast
pairwise_contrasts()
Pairwise Contrasts
unit_contrast()
Unit Contrast
poly_contrast()
Polynomial Contrast
one_against_all_contrast()
One Against All Contrast
Fcontrasts()
Fcontrasts
Fcontrasts(<event_term>)
Compute F-contrasts for Event Term
beta_stats()
Beta Statistics for Linear Model
fit_contrasts()
Fit Contrasts for Linear Model
estcon()
estcon

datasets

functions related to fMRI dataset representations

fmri_dataset()
Create an fMRI Dataset Object from a Set of Scans
latent_dataset()
Create a Latent Dataset Object
fmri_mem_dataset()
Create an fMRI Memory Dataset Object
matrix_dataset()
Create a Matrix Dataset Object
get_data()
get_data
get_mask()
get_mask
data_chunks()
return a set of data chunks
data_chunks(<fmri_file_dataset>)
Create Data Chunks for fmri_file_dataset Objects
data_chunks(<fmri_mem_dataset>)
Create Data Chunks for fmri_mem_dataset Objects
data_chunks(<matrix_dataset>)
Create Data Chunks for matrix_dataset Objects

model execution and stats

functions related to running model functions

fmri_model()
Construct an fMRI regression model
fmri_lm()
Fit a linear regression model for fMRI data analysis
fmri_latent_lm()
Fast fMRI Regression Model Estimation from a Latent Component Dataset
fmri_rlm()
fmri_rlm
afni_lm()
Set up an fMRI linear model for AFNI's 3dDeconvolve
fmri_lm_fit()
Fit an fMRI linear regression model with a specified fitting strategy
estimate_betas()
estimate trialwise beta coefficients for a dataset
estimate_betas(<fmri_dataset>)
#' @export estimate_betas.fmri_mem_dataset <- function(x,fixed=NULL, ran, block, method=c("mixed", "pls", "pls_searchlight", "pls_global", "ols"), basemod=NULL, radius=8, niter=8, ncomp=4, lambda=.01,...) estimate_betas.fmri_dataset(x,fixed,ran,block, method, basemod, radius, niter,ncomp, lambda,...) Estimate betas for an fMRI dataset
estimate_betas(<matrix_dataset>)
Estimate betas for a matrix dataset
estimate_hrf()
Estimate hemodynamic response function (HRF) using Generalized Additive Models (GAMs)
gen_afni_lm()
generate an AFNI linear model command from a configuration file
p_values()
p_values
standard_error()
standard_error
standard_error(<fmri_latent_lm>)
Calculate the standard error for an fmri_latent_lm object
run(<afni_lm_spec>)
Run an afni_lm_spec object
chunkwise_lm()
estimate a linear model sequentially for each "chunk" (a matrix of time-series) of data
stats()
stats

miscellaneous

miscellaneous and utlity functions

split_by_block()
split_by_block
split_onsets()
split an onset vector into a list
split_onsets(<event_term>)
Split onsets of an event_term object
plot(<regressor>)
plot a regressor object
design_plot()
Design Plot for fMRI Model
read_fmri_config()
read a basic fMRI configuration file
fmrireg
fmrireg: regresssion tools for fMRI data
despike()
Despike Time Series Data
soft_threshold()
Soft-threshold function
print(<fmri_betas>)
Pretty print method for fmri_betas objects
plot(<event_model>)
Plot an event_model object
evaluate(<hrfspec>)
evaluate.hrfspec
evaluate(<HRF>)
evaluate.HRF
multiresponse_bootstrap_lm()
Multiresponse Bootstrap Linear Model
run()
run