Package index
-
ar_parameters() - Extract Estimated AR Parameters from fmri_lm Fit
-
as.array(<NeuroVec>) - Coerce NeuroVec to base array
-
autoplot(<Reg>) - Autoplot method for Reg objects
-
blockids(<event_model>) - Block IDs for event_model
-
coef(<fmri_meta>) - Extract Coefficients from Meta-Analysis
-
coef_image() - Extract Image/Volume for Coefficient
-
coef_image(<fmri_ttest_fit>) - Extract Coefficient Image from fmri_ttest_fit
-
columns() - Extract Column Names or Identifiers
-
conditions(<convolved_term>) - Visualize the entire design matrix as a heatmap
-
contrast() - Contrast generic
-
contrast(<fmri_meta>) - Apply Contrast to Meta-Analysis Results
-
contrast_set() - Create a contrast set
-
correlation_map() - correlation_map
-
correlation_map(<fmri_model>) - correlation_map.fmri_model
-
create_3d_blocks() - Create 3D Blocks for Voxelwise Analysis
-
create_design_matrix_from_benchmark() - Create Design Matrix from Benchmark Dataset
-
design_map(<fmri_model>) - Heatmap visualization of the combined fmri_model design matrix
-
design_matrix(<convolved_term>) - Design Matrix for Convolved Terms
-
design_matrix(<fmri_lm>) - Design Matrix Method for fmri_lm Objects
-
design_matrix(<fmri_model>) - Design Matrix for fMRI Models
-
design_plot() - Design Plot for fMRI Model
-
.resample_param() - Resample parameter vector with specified distribution
-
estimate() - Deprecated helper: estimate()
-
estimate_betas() - Estimate Beta Coefficients for fMRI Data
-
estimate_betas(<fmri_dataset>) - Estimate betas using various regression methods
-
estimate_betas(<matrix_dataset>) - Estimate betas for a matrix dataset
-
estimate_hrf() - Estimate hemodynamic response function (HRF) using Generalized Additive Models (GAMs)
-
evaluate_method_performance() - Evaluate Method Performance on Benchmark Dataset
-
event_table(<convolved_term>) - Extract event table from convolved term
-
extract_csv_data() - Extract Data for Meta-Analysis from CSV
-
fit_contrasts() - Fit Contrasts
-
fit_contrasts(<default>) - Fit Contrasts for Linear Model (Default Method)
-
fit_contrasts(<fmri_lm>) - Fit Contrasts for fMRI Linear Model Objects
-
fitted_hrf() - fitted_hrf
-
fitted_hrf(<fmri_lm>) - Compute Fitted Hemodynamic Response Functions for an fmri_lm Object
-
flip_sign() - Flip Sign of Coefficients
-
fmri_benchmark_datasets - Benchmark fMRI datasets
-
fmri_latent_lm() - Fast fMRI Regression Model Estimation from a Latent Component Dataset
-
fmri_lm() - Fit a Linear Regression Model for fMRI Data Analysis
-
fmri_lm_control() - Configuration for fmri_lm fitting
-
fmri_meta() - Fit Group-Level Meta-Analysis
-
fmri_meta_fit() - Fit Meta-Analysis Models
-
fmri_meta_fit_contrasts() - Fit Meta-Analysis Models with Exact Contrasts
-
fmri_meta_fit_cov() - Fit Meta-Analysis and return packed covariance per voxel
-
fmri_meta_fit_extended() - Extended Meta-Analysis Fit with Voxelwise Covariate
-
fmri_model() - Construct an fMRI Regression Model
-
fmri_ols_fit() - OLS Fit with Optional Voxelwise Covariate
-
fmri_rlm() - Fit a Robust Linear Model for fMRI Data Analysis
-
fmri_ttest() - fmrireg t-tests for Group Analysis
-
generate_interaction_contrast()generate_main_effect_contrast() - Fast factorial contrast generators
-
get_benchmark_summary() - Get Benchmark Dataset Summary
-
get_contrasts() - Get Available Contrasts
-
get_covariates() - Get Covariates
-
get_rois() - Get Available ROIs
-
get_subjects() - Get Subject IDs
-
glm_lss() - GLM LSS Estimation Convenience Function (Single Trial Estimation)
-
glm_ols() - GLM OLS Estimation Convenience Function
-
group_data() - Create Group Dataset for Meta-Analysis
-
group_data_from_csv() - Create Group Dataset from CSV File or Data Frame
-
group_data_from_fmrilm() - Create Group Dataset from fmri_lm Objects
-
group_data_from_h5() - Create Group Dataset from HDF5 Files
-
group_data_from_nifti() - Create Group Dataset from NIfTI Files
-
hrf_smoothing_kernel() - Compute an HRF smoothing kernel
-
list_benchmark_datasets() - List Available Benchmark Datasets
-
load_benchmark_dataset() - Load fMRI Benchmark Datasets
-
longnames() - Extract Long Names of Variable Levels
-
lowrank_control() - Low-rank / sketch controls for fast GLM
-
meta_effective_n() - Compute Effective Sample Size for Meta-Analysis
-
meta_fit_vcov_cpp() - Meta-regression with ONE voxelwise covariate
-
mixed_solve_cpp() - Mixed Model Solver using Rcpp and roptim
-
n_subjects() - Extract Number of Subjects
-
ols_t_cpp() - OLS t-test / ANCOVA across features
-
ols_t_vcov_cpp() - OLS with ONE voxelwise covariate
-
p_values() - Extract P-values from a Model Fit
-
paired_diff_block() - Helper Functions for fmri_ttest
-
print(<fmri_model>)print(<fmri_lm>)print(<fmri_rlm>) - Print an fmri_lm_result object
-
print(<fmri_meta>) - Print Meta-Analysis Results
-
print(<fmri_ttest_fit>) - Print method for fmri_ttest_fit
-
print(<group_data>) - Print Group Data Object
-
print(<spatial_fdr_result>) - Print Spatial FDR Results
-
pvalues() - Compute P-values from Meta-Analysis
-
r_to_z() - Convert Correlation to Fisher's Z
-
read_h5_full() - Read All Data from HDF5 Files
-
read_nifti_full() - Read All Data from NIfTI Files
-
se() - Extract Standard Errors from Meta-Analysis
-
shortnames() - Short Names
-
simulate_bold_signal() - Simulate fMRI Time Series
-
simulate_fmri_matrix() - Simulate fMRI Time Courses, Return Shared Onsets + Column-Specific Amplitudes/Durations
-
simulate_noise_vector() - Simulate fMRI Noise
-
simulate_simple_dataset() - Simulate Complete fMRI Dataset
-
spatial_fdr() - Spatially-Aware Multiple Comparisons Correction
-
standard_error() - Extract Standard Errors from a Model Fit
-
stats() - Extract Test Statistics from a Model Fit
-
summary(<fmri_meta>) - Summary of Meta-Analysis Results
-
summary(<fmri_ttest_fit>) - Summary method for fmri_ttest_fit
-
summary(<group_data>) - Summary of Group Data Object
-
summary(<spatial_fdr_result>) - Summary of Spatial FDR Results
-
t_to_beta_se() - Convert t-statistics to Effect Sizes
-
t_to_d() - Convert T-statistics to Effect Sizes and Variances
-
term_matrices(<fmri_model>) - Extract term matrices from fmri_model
-
tidy() - Tidy generic
-
tidy(<fmri_meta>) - Tidy Meta-Analysis Results
-
welch_t_cpp() - Welch two-sample t-test across features
-
write_results() - Write Results from fMRI Analysis
-
write_results(<fmri_lm>) - Write Results from fMRI Linear Model
-
write_results(<fmri_meta>) - Write Meta-Analysis Results
-
z_to_r() - Back-transform Fisher's Z to Correlation
-
zscores() - Compute Z-scores from Meta-Analysis