Fit an fMRI Linear Regression Model with a Specified Fitting Strategy
Source:R/fmrilm.R
fmri_lm_fit.Rd
This function fits an fMRI linear regression model using the specified fmri_model
object, dataset,
and data splitting strategy (either "runwise"
or "chunkwise"
). It is primarily an internal function
used by the fmri_lm
function.
Usage
fmri_lm_fit(
fmrimod,
dataset,
strategy = c("runwise", "chunkwise"),
cfg,
nchunks = 10,
use_fast_path = FALSE,
progress = FALSE,
parallel_voxels = FALSE,
...
)
Arguments
- fmrimod
An
fmri_model
object.- dataset
An
fmri_dataset
object containing the time-series data.- strategy
The data splitting strategy, either
"runwise"
or"chunkwise"
. Default is"runwise"
.- cfg
An
fmri_lm_config
object containing all fitting options. Seefmri_lm_control
.- nchunks
Number of data chunks when strategy is
"chunkwise"
. Default is10
.- use_fast_path
Logical. If
TRUE
, use matrix-based computation for speed. Default isFALSE
.- progress
Logical. Whether to display a progress bar during model fitting. Default is
FALSE
.- parallel_voxels
Logical. If TRUE, voxelwise AR processing within runs is parallelised using
future.apply
. Default isFALSE
.- ...
Additional arguments.