#' @export estimate_betas.fmri_mem_dataset <- function(x,fixed=NULL, ran, block, method=c("mixed", "pls", "pls_searchlight", "pls_global", "ols"), basemod=NULL, radius=8, niter=8, ncomp=4, lambda=.01,...) estimate_betas.fmri_dataset(x,fixed,ran,block, method, basemod, radius, niter,ncomp, lambda,...) Estimate betas for an fMRI dataset
Source:R/fmri_betas.R
estimate_betas.fmri_dataset.Rd
This function estimates betas (regression coefficients) for fixed and random effects in an fMRI dataset using various methods.
Usage
# S3 method for fmri_dataset
estimate_betas(
x,
fixed = NULL,
ran,
block,
method = c("mixed", "pls", "pls_searchlight", "pls_global", "ols"),
basemod = NULL,
radius = 8,
niter = 8,
ncomp = 4,
lambda = 0.01,
...
)
Arguments
- x
An object of class
fmri_dataset
representing the fMRI dataset- fixed
A formula specifying the fixed regressors that model constant effects (i.e., non-varying over trials)
- ran
A formula specifying the random (trialwise) regressors that model single trial effects
- block
A formula specifying the block factor
- method
The regression method for estimating trialwise betas; one of "mixed", "pls", "pls_searchlight", "pls_global", or "ols" (default: "mixed")
- basemod
A
baseline_model
instance to regress out of data before beta estimation (default: NULL)- radius
The radius in mm for the
pls_searchlight
approach (default: 8)- niter
Number of searchlight iterations for the "pls_searchlight" method (default: 8)
- ncomp
Number of PLS components for the "pls", "pls_searchlight", and "pls_global" methods (default: 4)
- lambda
Lambda parameter (not currently used; default: 0.01)
- ...
Additional arguments passed to the estimation method
Value
A list of class "fmri_betas" containing the following components:
betas_fixed: NeuroVec object representing the fixed effect betas
betas_ran: NeuroVec object representing the random effect betas
design_ran: Design matrix for random effects
design_fixed: Design matrix for fixed effects
design_base: Design matrix for baseline model
basemod: Baseline model object
fixed_model: Fixed effect model object
ran_model: Random effect model object
Details
The method
argument allows for several beta estimation approaches:
"mixed": Uses a linear mixed-effects modeling of trialwise random effects as implemented in the
rrBLUP
package."pls": Uses separate partial least squares for each voxel to estimate trialwise betas.
"pls_searchlight": Estimates PLS solutions over searchlight windows and averages the beta estimates.
"pls_global": Estimates a single multiresponse PLS solution, where the
Y
matrix is the full data matrix."ols": Ordinary least squares estimate of betas – no regularization.