Fast fMRI Regression Model Estimation from a Latent Component Dataset
Source:R/fmri_latent_lm.R
fmri_latent_lm.Rd
This function estimates a regression model for fMRI data using a latent component dataset.
The dataset must be of type latent_dataset
, which itself requires a LatentNeuroVec
input.
Usage
fmri_latent_lm(
formula,
block,
baseline_model = NULL,
dataset,
durations,
drop_empty = TRUE,
robust = FALSE,
autocor = c("none", "auto", "ar1", "ar2", "arma"),
bootstrap = FALSE,
nboot = 1000,
...
)
Arguments
- formula
A formula specifying the regression model.
- block
A factor indicating the block structure of the data.
- baseline_model
An optional baseline model.
- dataset
A dataset of class 'latent_dataset'.
- durations
The duration of events in the dataset.
- drop_empty
Whether to drop empty events from the model. Default is TRUE.
- robust
Whether to use robust regression methods. Default is FALSE.
- autocor
The autocorrelation correction method to use on components. One of 'none', 'auto', 'ar1', 'ar2', or 'arma'. Default is 'none'.
- bootstrap
Whether to compute bootstrapped parameter estimates. Default is FALSE.
- nboot
The number of bootstrap iterations. Default is 1000.
- ...
Additional arguments.
Examples
# Create a LatentNeuroVec, and then create a latent_dataset
# ... (see example for latent_dataset)
# Estimate the fMRI regression model using the latent dataset
result <- fmri_latent_lm(formula = formula, block = block, dataset = dset,
durations = NULL, drop_empty = TRUE, robust = FALSE)
#> Error in inherits(dataset, "latent_dataset"): object 'dset' not found
# Print the result
print(result)
#> Error in print(result): object 'result' not found