Skip to contents

Introduction

neuroim2 is a comprehensive R package for neuroimaging data analysis, providing efficient data structures and methods for handling 3D brain volumes and 4D time-series data. Whether you’re working with structural MRI, functional MRI, or other volumetric brain imaging data, neuroim2 offers the tools you need.

Key Features

  • Efficient Data Structures: Optimized representations for both dense and sparse neuroimaging data
  • Flexible I/O: Read and write common neuroimaging formats (NIfTI, AFNI)
  • ROI Analysis: Create and analyze regions of interest with various shapes
  • Searchlight Methods: Implement searchlight analyses for pattern detection
  • Memory Management: Handle large datasets with file-backed and memory-mapped arrays
  • Spatial Operations: Resample, reorient, filter, and transform brain images
  • Parcellation Support: Work with brain atlases and parcellated data

Quick Start

library(neuroim2)

# Load a 3D brain volume
img <- read_vol(system.file("extdata", "global_mask2.nii.gz", package = "neuroim2"))

# Inspect the spatial properties
space(img)      # Complete spatial information
#> 
#>  NeuroSpace Object 
#> 
#>  >> Dimensions 
#>   Grid Size: 64 x 64 x 25
#>   Memory:   5.9 KB
#> 
#>  >> Spatial Properties 
#>   Spacing:   3.50 x 3.50 x 3.70 mm
#>   Origin:    112.00 x -108.50 x -46.25 mm
#> 
#>  >> Anatomical Orientation 
#>   X: Right-to-Left  |  Y: Posterior-to-Anterior  |  Z: Inferior-to-Superior 
#> 
#>  >> World Transformation 
#>   Forward (Voxel to World): 
#>     -3.500  -0.000  -0.000   112.000
#>  0.000   3.500  -0.000  -108.500
#> -0.000   0.000   3.700   -46.250
#>  0.000   0.000   0.000     1.000 
#>   Inverse (World to Voxel): 
#>     -0.286  -0.000  -0.000  32.000
#>  0.000   0.286   0.000  31.000
#>  0.000   0.000   0.270  12.500
#>  0.000   0.000   0.000   1.000 
#> 
#>  >> Bounding Box 
#>   Min Corner: -108.5, -108.5, -46.2 mm
#>   Max Corner: 112.0, 112.0, 42.6 mm
#> 
#> ==================================================
dim(img)        # Dimensions
#> [1] 64 64 25
spacing(img)    # Voxel sizes
#> [1] 3.5 3.5 3.7
origin(img)     # Origin coordinates
#> [1]  112.00 -108.50  -46.25

Core Data Structures

3D Volumes: NeuroVol

The NeuroVol class represents 3D brain volumes (structural images, masks, single time points):

# Create a synthetic 3D volume
dims <- c(64, 64, 40)
dat <- array(rnorm(prod(dims)), dims)
vol <- NeuroVol(dat, NeuroSpace(dims))

# Basic operations
vol_mean <- mean(vol)
vol_sd <- sd(vol)
cat("Volume mean:", vol_mean, "SD:", vol_sd, "\n")
#> Volume mean: -0.003293314 SD: 1.001015

# Logical volumes for masks
mask <- vol > 0
cat("Voxels above zero:", sum(mask), "\n")
#> Voxels above zero: 81574

4D Time-Series: NeuroVec

The NeuroVec class handles 4D data (e.g., fMRI time-series):

# Create a 4D time-series (small example)
dims_4d <- c(10, 10, 10, 20)  # 10x10x10 volume, 20 time points
dat_4d <- array(rnorm(prod(dims_4d)), dims_4d)
vec_4d <- NeuroVec(dat_4d, NeuroSpace(dims_4d))

# Extract time-series at a specific voxel
ts <- series(vec_4d, 5, 5, 5)
cat("Time-series length at voxel (5,5,5):", length(ts), "\n")
#> Time-series length at voxel (5,5,5): 20

# Extract a single volume at time point 10
vol_t10 <- vec_4d[,,,10]
cat("Volume at t=10 dimensions:", dim(vol_t10), "\n")
#> Volume at t=10 dimensions: 10 10 10

Region of Interest (ROI) Analysis

Creating ROIs

neuroim2 provides multiple ways to define regions of interest:

# Spherical ROI - most common for searchlight analyses
sphere <- spherical_roi(img, c(30, 30, 20), radius = 5)
cat("Spherical ROI contains", length(sphere), "voxels\n")
#> Spherical ROI contains 11 voxels

# Cuboid ROI - rectangular box
cube <- cuboid_roi(space(img), c(30, 30, 20), surround = 3)
cat("Cuboid ROI contains", length(cube), "voxels\n")
#> Cuboid ROI contains 343 voxels

# Extract values from the original image using ROI
roi_values <- img[coords(sphere)]
cat("Mean value in spherical ROI:", mean(roi_values), "\n")
#> Mean value in spherical ROI: 1

Searchlight Analysis

Searchlight is a powerful technique for local pattern analysis:

# Create searchlights with 6mm radius
lights <- searchlight(img, radius = 6, eager = FALSE)

# Process first few searchlights (normally you'd process all)
first_5 <- lights[1:5]
means <- sapply(first_5, function(roi) mean(img[coords(roi)]))
cat("First 5 searchlight means:", round(means, 2), "\n")
#> First 5 searchlight means: 0.95 0.95 0.84 0.74 0.79

Coordinate Systems and Transformations

Coordinate Conversions

neuroim2 handles conversions between different coordinate systems:

# Voxel coordinates to world coordinates (mm)
voxel_coords <- c(30, 30, 20)
world_coords <- grid_to_coord(img, matrix(voxel_coords, nrow = 1))
cat("Voxel", voxel_coords, "-> World", round(world_coords, 2), "mm\n")
#> Voxel 30 30 20 -> World 10.5 -7 24.05 mm

# World coordinates back to voxel
voxel_back <- coord_to_grid(img, world_coords)
cat("World", round(world_coords, 2), "-> Voxel", voxel_back, "\n")
#> World 10.5 -7 24.05 -> Voxel 30 30 19.99999

# Linear indices
idx <- grid_to_index(img, matrix(voxel_coords, nrow = 1))
cat("Voxel", voxel_coords, "-> Linear index", idx, "\n")
#> Voxel 30 30 20 -> Linear index 79710

Memory-Efficient Operations

Sparse Representations

For data with many zero values (e.g., masks, ROIs):

# Create a sparse representation directly from an ROI
roi <- spherical_roi(img, c(30, 30, 20), radius = 8, fill = 1)

# Convert ROI to sparse volume
sparse_roi <- as.sparse(roi)

# Compare memory usage (convert original ROI to dense for baseline)
dense_vol <- as.dense(roi)
cat("Dense size:", format(object.size(dense_vol), units = "auto"), "\n")
#> Dense size: 806.6 Kb
cat("Sparse size:", format(object.size(sparse_roi), units = "auto"), "\n")
#> Sparse size: 8.3 Kb
cat("Non-zero voxels:", length(roi), "out of", prod(dim(img)), "total\n")
#> Non-zero voxels: 49 out of 102400 total
cat("Space savings:", round((1 - as.numeric(object.size(sparse_roi)) / 
                              as.numeric(object.size(dense_vol))) * 100, 1), "%\n")
#> Space savings: 99 %

File-Backed Arrays

For datasets too large to fit in memory:

# Create a file-backed 4D dataset (not run in vignette)
big_vec <- FileBackedNeuroVec(
  dims = c(91, 109, 91, 1000),  # Standard MNI space, 1000 volumes
  dtype = "float32",
  file_name = "big_data.dat"
)

# Access works like regular arrays but data stays on disk
subset <- big_vec[45, 55, 45, 1:10]  # Load only what you need

Spatial Filtering and Processing

Smoothing Operations

# Gaussian smoothing with single sigma value (pass mask explicitly)
img_smooth <- gaussian_blur(img, img, sigma = 2)

# Compare original vs smoothed
orig_vals <- img[30:32, 30:32, 20]
smooth_vals <- img_smooth[30:32, 30:32, 20]
cat("Original variance:", var(as.vector(orig_vals)), "\n")
#> Original variance: 0
cat("Smoothed variance:", var(as.vector(smooth_vals)), "\n")
#> Smoothed variance: 0

Resampling

# Downsample by factor of 2
img_down <- downsample(img, c(2, 2, 2))
cat("Original dimensions:", dim(img), "\n")
#> Original dimensions: 64 64 25
cat("Downsampled dimensions:", dim(img_down), "\n")
#> Downsampled dimensions: 112 112 46

Working with Parcellations

ClusteredNeuroVol for Atlas-Based Analysis

# Create a simple parcellation
coords <- index_to_coord(img, which(as.logical(img)))
set.seed(123)
k <- 10  # 10 parcels
if (nrow(coords) > k) {
  km <- kmeans(coords, centers = k, iter.max = 100)
  
  # Create clustered volume
  cvol <- ClusteredNeuroVol(img, km$cluster)
  cat("Created", num_clusters(cvol), "parcels\n")
  
  # Get centroids of each parcel
  centers <- centroids(cvol)
  cat("First parcel centroid:", round(centers[1,], 1), "mm\n")
}
#> Created 10 parcels
#> First parcel centroid: 41.3 26.2 18.8 mm

Input/Output Operations

Reading and Writing

# Write a volume to a temporary file
tmp_file <- tempfile(fileext = ".nii.gz")
write_vol(img, tmp_file)
cat("Wrote volume to:", tmp_file, "\n")
#> Wrote volume to: /tmp/RtmpZ6xM1V/file2a9a475e0b39.nii.gz

# Read it back
img_read <- read_vol(tmp_file)
cat("Read volume with dimensions:", dim(img_read), "\n")
#> Read volume with dimensions: 64 64 25

# Clean up
file.remove(tmp_file)
#> [1] TRUE

Working with Multiple Files

# Read multiple volumes (not run)
files <- c("scan1.nii", "scan2.nii", "scan3.nii")
vols <- read_vec(files)  # Creates a NeuroVecSeq

# Or read as a single concatenated 4D volume
vols_list <- lapply(files, read_vol)
vec_concat <- vec_from_vols(vols_list)

Practical Example: ROI-Based Time-Series Analysis

Here’s a complete workflow combining multiple features:

# Create synthetic fMRI-like data
dims_fmri <- c(20, 20, 15, 50)  # Small for example
fmri_data <- array(rnorm(prod(dims_fmri), mean = 1000, sd = 50), dims_fmri)
fmri <- NeuroVec(fmri_data, NeuroSpace(dims_fmri))

# Define an ROI
roi <- spherical_roi(space(fmri), c(10, 10, 8), radius = 3)
cat("ROI size:", length(roi), "voxels\n")
#> ROI size: 123 voxels

# Extract time-series from ROI
roi_ts <- series_roi(fmri, roi)
roi_mat <- values(roi_ts)  # T x N matrix
cat("ROI time-series matrix:", dim(roi_mat), "\n")
#> ROI time-series matrix: 50 123

# Compute mean time-series
mean_ts <- rowMeans(roi_mat)

# Z-score the mean time-series
z_ts <- as.numeric(base::scale(mean_ts))
cat("Mean time-series - Mean:", round(mean(z_ts), 4), 
    "SD:", round(sd(z_ts), 4), "\n")
#> Mean time-series - Mean: 0 SD: 1

# Find peak activation time
peak_time <- which.max(z_ts)
cat("Peak activation at time point:", peak_time, 
    "with z-score:", round(z_ts[peak_time], 2), "\n")
#> Peak activation at time point: 41 with z-score: 2.16

Performance Tips

  1. Use appropriate data structures:
    • SparseNeuroVol for masks and ROIs
    • FileBackedNeuroVec for very large datasets
    • Regular arrays for small-to-medium data
  2. Vectorize operations:
    • Use spherical_roi_set() instead of loops for multiple ROIs
    • Process searchlights in parallel when possible
  3. Preallocate memory:
    • Know your output dimensions and allocate arrays upfront
  4. Choose the right format:
    • Use compressed NIfTI (.nii.gz) for storage
    • Keep working data uncompressed for speed

Getting Help

Package Documentation

# List all functions
help(package = "neuroim2")

# Search for specific topics
help.search("roi", package = "neuroim2")

Quick Reference

Common operations at a glance:

Task Function
Read NIfTI file read_vol(), read_vec()
Write NIfTI file write_vol(), write_vec()
Create spherical ROI spherical_roi()
Extract time-series series(), series_roi()
Smooth image gaussian_blur()
Resample image resample()
Coordinate conversion coord_to_grid(), grid_to_coord()
Create mask LogicalNeuroVol()
Sparse representation as.sparse()
Concatenate volumes concat()

Summary

neuroim2 provides a comprehensive toolkit for neuroimaging analysis in R. Its efficient data structures, flexible ROI tools, and memory-conscious design make it suitable for both interactive exploration and large-scale processing pipelines. Start with the basic NeuroVol and NeuroVec classes, explore ROI creation for your specific needs, and leverage sparse or file-backed arrays when working with large datasets.

For more advanced usage and specific workflows, consult the topic-specific vignettes listed above.