Convert to dense representation
Examples
# Create a sparse representation
space <- NeuroSpace(c(10,10,10,4), c(1,1,1))
mask <- array(runif(10*10*10) > 0.8, c(10,10,10)) # ~20% of voxels active
data <- matrix(rnorm(sum(mask) * 4), 4, sum(mask)) # Random data for active voxels
sparse_vec <- SparseNeuroVec(data, space, mask)
# Convert to dense representation
dense_vec <- as.dense(sparse_vec)
# The dense representation has the same dimensions but stores all voxels
identical(dim(sparse_vec), dim(dense_vec))
#> [1] TRUE