Skip to contents

Working with neuroimaging time-series data

The neuroim2 package contains data structures and functions for reading, accessing, and processing 4-dimensional neuroimaging data.

In this vignette, we’ll introduce NeuroVec (4D images) and related helpers you’ll use most often:

  • Read/write on-disk images (read_vec, write_vec)
  • Spatial metadata via NeuroSpace (dimensions, spacing, origin)
  • Voxel- and ROI-based access (series, series_roi, coords)
  • Common transforms (z-scoring with scale_series, concatenation with concat)
  • Dense vs. sparse representations (DenseNeuroVec, SparseNeuroVec, as.sparse)

Reading a four-dimensional NifTI image with read_vec

Here we read in an example image. This file is 4D in the package data (64×64×25×4), so read_vec() returns a NeuroVec with four volumes (timepoints).

      library(purrr)
      library(ggplot2)
      file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2")
      vec <- read_vec(file_name)
      dim(vec)
#> [1] 64 64 25  4
      vec
#> 
#> DenseNeuroVec (3.13 bytes MB)
#> 
#> - Spatial Info ---------------------------
#> | Dimensions    : 64 x 64 x 25 (4 timepoints)
#> | Total Voxels  : 102,400
#> | Spacing       : 3.5 x 3.5 x 3.7
#> 
#> - Properties ---------------------------
#> | Origin        : 112 x -108 x -46.2
#> | Orientation   : Right-to-Left Posterior-to-Anterior Inferior-to-Superior
#> 
#> - Statistics ---------------------------
#>     Mean +/- SD    : 0.288 +/- 0.453
#> 
#> Label: /home/runner/work/_temp/Library/neuroim2/extdata/global_mask_v4.nii

Now imagine we have a set of images. We can read multiple files with read_vec. Passing multiple paths returns a NeuroVecSeq (a sequence of vectors) rather than a single concatenated 4D vector.

    
      file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2")
      vec_multi <- read_vec(c(file_name, file_name, file_name))
      dim(vec_multi)
#> [1] 64 64 25 12
      
      vec2 <- read_vec(rep(file_name, 10))
      vec2
#> 
#> NeuroVecSeq (10 vectors)
#> 
#> += Sequence Info ---------------------------
#> | Length        : 10
#> | Total Time    : 40 points
#> 
#> += Spatial Info ---------------------------
#> | Dimensions    : 64 x 64 x 25
#> | Spacing       : 3.5 x 3.5 x 3.7
#> | Origin        : 112 x -108 x -46.2
#> | Orientation   : Right-to-Left Posterior-to-Anterior Inferior-to-Superior
#> 
#> += Vector Details --------------------------
#>   1. DenseNeuroVec (4 timepoints)
#>   2. DenseNeuroVec (4 timepoints)
#>   3. DenseNeuroVec (4 timepoints)
#>   4. DenseNeuroVec (4 timepoints)
#>   5. DenseNeuroVec (4 timepoints)
#>   6. DenseNeuroVec (4 timepoints)
#>   7. DenseNeuroVec (4 timepoints)
#>   8. DenseNeuroVec (4 timepoints)
#>   9. DenseNeuroVec (4 timepoints)
#>   10. DenseNeuroVec (4 timepoints)

To extract a subset of volumes from a 4D vector, use sub_vector directly:

      # Extract a subset of volumes (first 3 timepoints)
      vec_1_3 <- sub_vector(vec, 1:3)
      dim(vec_1_3)
#> [1] 64 64 25  3
      vec_1_3
#> 
#> DenseNeuroVec (2.35 bytes MB)
#> 
#> - Spatial Info ---------------------------
#> | Dimensions    : 64 x 64 x 25 (3 timepoints)
#> | Total Voxels  : 102,400
#> | Spacing       : 3.5 x 3.5 x 3.7
#> 
#> - Properties ---------------------------
#> | Origin        : 112 x -108 x -46.2
#> | Orientation   : Right-to-Left Posterior-to-Anterior Inferior-to-Superior
#> 
#> - Statistics ---------------------------
#>     Mean +/- SD    : 0.288 +/- 0.453
#> 
#> Label: none

Extracting time-series data using the series and series_roi functions

To get the time-series at voxel (1,1,1) we can use the series function:

      
      series(vec_1_3, 1,1,1)
#> [1] 0 0 0

We can extract a 4d region of interest with the series_roi as follows:

      file_name <- system.file("extdata", "global_mask_v4.nii", package="neuroim2")
      vol <- read_vol(file_name)
      roi <- spherical_roi(vol, c(12,12,12), radius=8)
      rvec1 <- series_roi(vec, roi)
      
      ## or alternatively as a pipeline
      rvec2 <- read_vol(file_name) %>% spherical_roi(c(12,12,12), radius=8) %>% series_roi(vec,.)
      rvec2
#> 
#>  === ROIVec Object === 
#> 
#> - Structure 
#>   Points:     49
#>   Features:   3 (147 total)
#>   Memory:     9.6 Kb
#> 
#> - Spatial Properties
#>   Parent Space: 64 x 64 x 25 x 4
#>   Centroid:     [13.0, 13.0, 13.0 mm]
#> 
#> - Value Properties
#>   Range:    [0.00, 0.00]
#> 
#> ======================================
#> 
#>  Access Methods: 
#>   .  Get Points:   coords(object) 
#>   .  Get Values:   as.matrix(object) 
#>   .  Subset:       object[1:10, ]
      
      ## we can extract the ROI values with the `values` method.
      assertthat::assert_that(all(values(rvec1) == values(rvec2)))
#> [1] TRUE
      assertthat::assert_that(all(coords(rvec1) == coords(rvec2)))
#> [1] TRUE

We can also extract an ROI using 1d indices:


r1 <- series_roi(vec, 1:100)
r1
#> 
#>  === ROIVec Object === 
#> 
#> - Structure 
#>   Points:     100
#>   Features:   3 (300 total)
#>   Memory:     11.2 Kb
#> 
#> - Spatial Properties
#>   Parent Space: 64 x 64 x 25 x 4
#>   Centroid:     [27.5, 1.4, 1.0 mm]
#> 
#> - Value Properties
#>   Range:    [0.00, 0.00]
#> 
#> ======================================
#> 
#>  Access Methods: 
#>   .  Get Points:   coords(object) 
#>   .  Get Values:   as.matrix(object) 
#>   .  Subset:       object[1:10, ]

Or we can extract a plain matrix using the series function:

r2 <- series(vec, 1:100)
dim(r2)
#> [1]   4 100

We can also use coordinate indexing using voxel coordinates. First we load a binary mask with the same spatial dimensions as our NeuroVec:

mask <- read_vol(system.file("extdata", "global_mask_v4.nii", package="neuroim2"))

Now we convert indices to voxels and extract a matrix of values at the specified locations:

vox <- index_to_grid(mask, 1:100)

r3 <- series(vec, vox)
dim(r3)
#> [1]   4 100

And the same using series_roi:

r4 <- series_roi(vec,vox)
r4
#> 
#>  === ROIVec Object === 
#> 
#> - Structure 
#>   Points:     100
#>   Features:   3 (300 total)
#>   Memory:     12.4 Kb
#> 
#> - Spatial Properties
#>   Parent Space: 64 x 64 x 25 x 4
#>   Centroid:     [27.5, 1.4, 1.0 mm]
#> 
#> - Value Properties
#>   Range:    [0.00, 0.00]
#> 
#> ======================================
#> 
#>  Access Methods: 
#>   .  Get Points:   coords(object) 
#>   .  Get Values:   as.matrix(object) 
#>   .  Subset:       object[1:10, ]

Inspecting spatial metadata with NeuroSpace

Every NeuroVec carries a NeuroSpace describing its geometry.

sp <- space(vec)
sp                   # dimensions, spacing, origin, axes
#> 
#>  NeuroSpace Object 
#> 
#>  >> Dimensions 
#>   Grid Size: 64 x 64 x 25 x 4
#>   Memory:   5.9 KB
#> 
#>  >> Spatial Properties 
#>   Spacing:   3.50 x 3.50 x 3.70 mm
#>   Origin:    112.00 x -108.00 x -46.20 mm
#> 
#>  >> Anatomical Orientation 
#>   X: Right-to-Left  |  Y: Posterior-to-Anterior  |  Z: Inferior-to-Superior 
#> 
#>  >> World Transformation 
#>   Forward (Voxel to World): 
#>     -3.500  0.000  -0.000   112.000
#>  0.000  3.500  -0.000  -108.000
#>  0.000  0.000   3.700   -46.200
#>  0.000  0.000   0.000     1.000 
#>   Inverse (World to Voxel): 
#>     -0.286  -0.000  -0.000  32.000
#>  0.000   0.286   0.000  30.857
#>  0.000   0.000   0.270  12.486
#>  0.000   0.000   0.000   1.000 
#> 
#>  >> Bounding Box 
#>   Min Corner: -108.5, -108.0, -46.2 mm
#>   Max Corner: 112.0, 112.5, 42.6 mm
#> 
#> ==================================================
dim(vec)             # 4D dims: X × Y × Z × T
#> [1] 64 64 25  4
spacing(vec)         # voxel spacing (mm)
#> [1] 3.5 3.5 3.7
origin(vec)          # image origin
#> [1]  112.0 -108.0  -46.2
ndim(vec)            # == 4 for time series
#> [1] 4

The default mask for dense vectors is “all voxels are valid”:

m <- mask(vec)
m
#> 
#>  === NeuroVol Object === 
#> 
#> * Basic Information 
#>   Type:      LogicalNeuroVol
#>   Dimensions: 64 x 64 x 25 (406.6 Kb)
#>   Total Voxels: 102,400
#> 
#> * Data Properties
#>   Value Range: [1.00, 1.00]
#> 
#> * Spatial Properties
#>   Spacing: 3.50 x 3.50 x 3.70 mm
#>   Origin:  112.0, -108.0, -46.2 mm
#>   Axes:    Left-to-Right x Posterior-to-Anterior x Inferior-to-Superior
#> 
#> ======================================
#> 
#>  Access Methods: 
#>   .  Get Slice:   slice(object, zlevel=10) 
#>   .  Get Value:   object[i, j, k] 
#>   .  Plot:       plot(object)  # shows multiple slices

Creating a NeuroVec from an in-memory array

You can build a NeuroVec directly from arrays or matrices:

set.seed(1)
dims <- c(24, 24, 24, 5)
arr  <- array(rnorm(prod(dims)), dims)
sp4  <- NeuroSpace(dims, spacing = c(2,2,2))
dvec <- NeuroVec(arr, sp4)
dim(dvec)
#> [1] 24 24 24  5

You can also start from a matrix (voxels × time or time × voxels) using DenseNeuroVec:

mat  <- matrix(rnorm(prod(dims)), nrow = prod(dims[1:3]), ncol = dims[4])
dvec2 <- DenseNeuroVec(mat, sp4)
all.equal(dim(dvec), dim(dvec2))
#> [1] TRUE

Time-series transforms: z-scoring and summary volumes

Z-score each voxel’s time-series (center and scale across time):

vec_z <- scale_series(dvec, center = TRUE, scale = TRUE)
dim(vec_z)
#> [1] 24 24 24  5

Compute a mean volume across time and return a 3D NeuroVol:

M      <- as.matrix(dvec)              # voxels × time
vmean  <- rowMeans(M)                  # per-voxel mean
mean3d <- NeuroVol(vmean, drop_dim(space(dvec)))
mean3d
#> 
#>  === NeuroVol Object === 
#> 
#> * Basic Information 
#>   Type:      DenseNeuroVol
#>   Dimensions: 24 x 24 x 24 (114.6 Kb)
#>   Total Voxels: 13,824
#> 
#> * Data Properties
#>   Value Range: [-1.64, 1.76]
#> 
#> * Spatial Properties
#>   Spacing: 2.00 x 2.00 x 2.00 mm
#>   Origin:  0.0, 0.0, 0.0 mm
#>   Axes:    Left-to-Right x Posterior-to-Anterior x Inferior-to-Superior
#> 
#> ======================================
#> 
#>  Access Methods: 
#>   .  Get Slice:   slice(object, zlevel=10) 
#>   .  Get Value:   object[i, j, k] 
#>   .  Plot:       plot(object)  # shows multiple slices

Concatenating along time

Append time points by concatenating vectors or volumes:

dvec_more <- concat(dvec, dvec)        # doubles the time dimension
dim(dvec_more)
#> [1] 24 24 24 10

Dense ↔︎ sparse workflows

Sparse representations store only voxels within a mask. This is handy for large ROIs or brain masks.

# Build a random mask and convert a dense vec to sparse
mask_arr <- array(runif(prod(dims[1:3])) > 0.7, dims[1:3])
mask_vol <- LogicalNeuroVol(mask_arr, drop_dim(sp4))

svec <- as.sparse(dvec, mask_vol)     # SparseNeuroVec with explicit mask
svec                                 # note the stored mask and cardinality
#> 
#> SparseNeuroVec 
#> 
#> += Spatial Info ---------------------------
#> | Dimensions    : 24 x 24 x 24
#> | Time Points   : 5
#> | Spacing       : 2 x 2 x 2
#> | Origin        : 0 x 0 x 0
#> 
#> +- Sparse Info  ----------------------------
#> | Cardinality   : 4128
#> 
#> += Memory Usage --------------------------
#>   Size          : 306.02 KB

# Convert back to dense if needed
dense_again <- as.dense(svec)
all.equal(dim(dense_again), dim(dvec))
#> [1] TRUE

Tip: For file-backed or memory-mapped vectors, convert to DenseNeuroVec via a matrix if you need dense-only operations:

dv_dense <- DenseNeuroVec(as.matrix(vec), space(vec))

Writing vectors to disk

You can write NeuroVec and NeuroVol objects as NIfTI files:

tmp_vec <- tempfile(fileext = ".nii.gz")
write_vec(vec_1_3, tmp_vec)
file.exists(tmp_vec)
#> [1] TRUE
unlink(tmp_vec)

Putting it together with an ROI

Combine ROI extraction with time-series transforms:

vol3d <- read_vol(system.file("extdata", "global_mask_v4.nii", package="neuroim2"))
roi   <- spherical_roi(vol3d, c(12,12,12), radius = 6)
rts   <- series_roi(vec, roi)          # ROIVec (T × N with coords)

# z-score each column (voxel) across time, then average within ROI
mat_roi  <- values(rts)                # T × N
mat_z    <- base::scale(mat_roi, center=TRUE, scale=TRUE)
roi_mean <- rowMeans(mat_z)
length(roi_mean)                       # matches time dimension
#> [1] 4

That’s the core workflow for 4D data in neuroim2: load or create a NeuroVec, inspect its NeuroSpace, access time-series via voxels or ROIs, apply simple transforms, and optionally move between dense and sparse representations.