This class represents a three-dimensional brain image where all values are either TRUE or FALSE. It is particularly useful for creating and managing binary masks for brain images.
This function constructs a LogicalNeuroVol
instance.
Arguments
- data
A three-dimensional
array
, a 1D vector with length equal toprod(dim(space))
, or a set ofindices
where elements areTRUE
.- space
An instance of class
NeuroSpace
.- label
A
character
string.- indices
An optional 1-d index vector.
Details
The LogicalNeuroVol class extends the DenseNeuroVol
class,
inheriting its spatial properties and array-based storage. However, it
constrains the values to be logical (TRUE or FALSE), making it ideal for
representing binary masks, regions of interest (ROIs), or segmentation results
in neuroimaging analyses.
Slots
.Data
A logical array containing the binary volume data.
space
A
NeuroSpace
object defining the spatial properties of the volume.
Methods
This class inherits methods from DenseNeuroVol
. Additional
methods specific to logical operations may be available.
See also
DenseNeuroVol-class
for the parent class.
NeuroVol-class
for the base volumetric image class.
Examples
# Create a simple logical brain volume (e.g., a mask)
dim <- c(64L, 64L, 64L)
mask_data <- array(sample(c(TRUE, FALSE), prod(dim), replace = TRUE), dim)
mask_space <- NeuroSpace(dim = dim, origin = c(0, 0, 0), spacing = c(1, 1, 1))
brain_mask <- new("LogicalNeuroVol", .Data = mask_data, space = mask_space)
# Check the proportion of TRUE voxels
true_proportion <- sum(brain_mask) / prod(dim(brain_mask))
print(paste("Proportion of TRUE voxels:", true_proportion))
#> [1] "Proportion of TRUE voxels: 0.500446319580078"
# Load an example brain mask
brain_mask <- read_vol(system.file("extdata", "global_mask_v4.nii", package="neuroim2"))
# Convert the brain mask to a LogicalNeuroVol
logical_vol <- LogicalNeuroVol(brain_mask, space(brain_mask))