Extract Geometric Properties of an Image
Source:R/all_generic.R
, R/index_vol.R
, R/neuro_obj.R
, and 1 more
space-methods.Rd
This function retrieves the geometric properties of a given image, such as dimensions and voxel size.
Retrieves the NeuroSpace object associated with an IndexLookupVol object.
Usage
space(x, ...)
# S4 method for class 'IndexLookupVol'
space(x)
# S4 method for class 'ROICoords'
space(x)
# S4 method for class 'NeuroObj'
space(x)
# S4 method for class 'NeuroSpace'
space(x)
Arguments
- x
An
IndexLookupVol
object- ...
Additional arguments, if needed.
Value
A NeuroSpace
object representing the geometric space of x
.
Examples
# Create a NeuroSpace object with dimensions (10, 10, 10) and voxel size (1, 1, 1)
x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))
# Create a NeuroVol object with random data and the specified NeuroSpace
vol <- NeuroVol(rnorm(10 * 10 * 10), x)
# Retrieve the geometric properties of the NeuroVol object
identical(x, space(vol))
#> [1] TRUE
space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(0, 0, 0))
ilv <- IndexLookupVol(space, c(1:100))
space(ilv) # Get the associated NeuroSpace object
#>
#> NeuroSpace Object
#>
#> >> Dimensions
#> Grid Size: 64 x 64 x 64
#> Memory: 5.9 KB
#>
#> >> Spatial Properties
#> Spacing: 1.00 x 1.00 x 1.00 mm
#> Origin: 0.00 x 0.00 x 0.00 mm
#>
#> >> Anatomical Orientation
#> X: Left-to-Right | Y: Posterior-to-Anterior | Z: Inferior-to-Superior
#>
#> >> World Transformation
#> Forward (Voxel to World):
#> 1.000 0.000 0.000 0.000
#> 0.000 1.000 0.000 0.000
#> 0.000 0.000 1.000 0.000
#> 0.000 0.000 0.000 1.000
#> Inverse (World to Voxel):
#> 1.000 0.000 0.000 0.000
#> 0.000 1.000 0.000 0.000
#> 0.000 0.000 1.000 0.000
#> 0.000 0.000 0.000 1.000
#>
#> >> Bounding Box
#> Min Corner: 0.0, 0.0, 0.0 mm
#> Max Corner: 63.0, 63.0, 63.0 mm
#>
#> ==================================================