Skip to contents

Projects new data from either the X or Y domain onto the latent subspace, considering only a specified subset of original features (colind).

Usage

# S3 method for class 'cross_projector'
partial_project(
  x,
  new_data,
  colind,
  least_squares = TRUE,
  lambda = 1e-06,
  source = c("X", "Y"),
  ...
)

Arguments

x

A cross_projector object.

new_data

A numeric matrix (n x length(colind)) or vector, representing the observations corresponding to the columns specified by colind.

colind

A numeric vector of column indices in the original data space (either X or Y domain, specified by source) that correspond to new_data's columns.

least_squares

Logical; if TRUE (default), use ridge-regularized least squares for projection.

lambda

Numeric; ridge penalty (default 1e-6). Ignored if least_squares=FALSE.

source

Character, either "X" or "Y", indicating which domain new_data and colind belong to.

...

Additional arguments (currently ignored).

Value

A numeric matrix (n x d) of factor scores in the latent subspace.