Function reference
-
pca()
- Principal Components Analysis (PCA)
-
svd_wrapper()
- Singular Value Decomposition (SVD) Wrapper
-
regress()
- Multi-output linear regression
Model classes for multivariate decompositions and extension
Generic S3 classes use to represented multivariate model fits
-
projector()
- Construct a
projector
instance
-
bi_projector()
- Construct a bi_projector instance
-
bi_projector_union()
- A Union of Concatenated
bi_projector
Fits
-
discriminant_projector()
- Construct a Discriminant Projector
-
cross_projector()
- Two-way (cross) projection to latent components
-
multiblock_biprojector()
- Create a Multiblock Bi-Projector
-
multiblock_projector()
- Create a Multiblock Projector
-
partial_projector(<projector>)
- construct a partial_projector from a
projector
instance
-
project()
- New sample projection
-
residualize()
- Compute a regression model for each column in a matrix and return residual matrix
-
partial_project()
- Partially project a new sample onto subspace
-
partial_projector()
- Construct a partial projector
-
project_block()
- Project a single "block" of data onto the subspace
-
project_vars()
- Project one or more variables onto a subspace
-
transpose()
- Transpose a model
-
reconstruct()
- Reconstruct the data
-
inverse_projection()
- Inverse of the Component Matrix
-
partial_inverse_projection()
- Partial Inverse Projection of a Columnwise Subset of Component Matrix
-
compose_projector()
- Compose Two Projectors
-
compose_projectors()
- Projector Composition
-
refit()
- refit a model
-
nystrom_embedding()
- Nystrom method for out-of-sample embedding
Cross Projection
Functions for creating and working with cross_projectors for two-way projection between two sets of variables or features.
-
project(<cross_projector>)
- project a cross_projector instance
-
coef(<cross_projector>)
- Extract coefficients from a cross_projector object
-
reprocess(<cross_projector>)
- reprocess a cross_projector instance
-
shape(<cross_projector>)
- shape of a cross_projector instance
-
components()
- get the components
-
scores()
- Retrieve the component scores
-
std_scores()
- Compute standardized component scores
-
sdev()
- standard deviations
-
ncomp()
- Get the number of components
-
shape()
- Shape of the Projector
-
is_orthogonal()
- is it orthogonal
-
truncate()
- truncate a component fit
-
block_lengths()
- get block_lengths
-
block_indices()
- get block_indices
-
nblocks()
- get the number of blocks
-
prinang()
- Compute principal angles for a set of subspaces
-
rotate()
- Rotate a Component Solution
-
apply_rotation()
- Apply rotation
-
convert_domain()
- Transfer data from one input domain to another via common latent space
Resampling and Confidence Intervals
Functions for bootstrapping and estimating confidence intervals.
-
bootstrap()
- Bootstrap Resampling for Multivariate Models
-
bootstrap(<pca>)
- PCA Bootstrap Resampling
-
perm_ci()
- Permutation Confidence Intervals
-
classifier()
- Construct a Classifier
-
classifier(<discriminant_projector>)
- Create a k-NN classifier for a discriminant projector
-
classifier(<multiblock_biprojector>)
- Multiblock Bi-Projector Classifier
-
classifier(<projector>)
- create
classifier
from aprojector
-
rf_classifier()
- construct a random forest wrapper classifier
-
rf_classifier(<projector>)
- create a random forest classifier
-
predict(<classifier>)
- predict with a classifier object
-
residuals()
- Obtain residuals of a component model fit
-
center()
- center a data matrix
-
pass()
- a no-op pre-processing step
-
standardize()
- center and scale each vector of a matrix
-
colscale()
- scale a data matrix
-
prep()
- prepare a dataset by applying a pre-processing pipeline
-
fresh()
- Get a fresh pre-processing node cleared of any cached data
-
reprocess()
- apply pre-processing parameters to a new data matrix
-
apply_transform()
- apply a pre-processing transform
-
reverse_transform()
- reverse a pre-processing transform
-
init_transform()
- initialize a transform
-
concat_pre_processors()
- bind together blockwise pre-processors
-
add_node()
- add a pre-processing stage
-
print(<bi_projector>)
- Pretty Print S3 Method for bi_projector Class
-
print(<bi_projector_union>)
- Pretty Print S3 Method for bi_projector_union Class
-
print(<classifier>)
- Pretty Print Method for
classifier
Objects
-
print(<composed_projector>)
- Pretty Print Method for
composed_projector
Objects
-
print(<multiblock_biprojector>)
- Pretty Print Method for
multiblock_biprojector
Objects
-
print(<projector>)
- Pretty Print Method for
projector
Objects
-
group_means()
- Compute column-wise mean in X for each factor level of Y