Function reference
-
pca() - Principal Components Analysis (PCA)
-
svd_wrapper() - Singular Value Decomposition (SVD) Wrapper
-
regress() - Multi-output linear regression
Model classes for multivariate decompositions and extension
Generic S3 classes use to represented multivariate model fits
-
projector() - Construct a
projectorinstance
-
bi_projector() - Construct a bi_projector instance
-
bi_projector_union() - A Union of Concatenated
bi_projectorFits
-
discriminant_projector() - Construct a Discriminant Projector
-
cross_projector() - Two-way (cross) projection to latent components
-
multiblock_biprojector() - Create a Multiblock Bi-Projector
-
multiblock_projector() - Create a Multiblock Projector
-
partial_projector(<projector>) - construct a partial_projector from a
projectorinstance
-
project() - New sample projection
-
residualize() - Compute a regression model for each column in a matrix and return residual matrix
-
partial_project() - Partially project a new sample onto subspace
-
partial_projector() - Construct a partial projector
-
project_block() - Project a single "block" of data onto the subspace
-
project_vars() - Project one or more variables onto a subspace
-
transpose() - Transpose a model
-
reconstruct() - Reconstruct the data
-
inverse_projection() - Inverse of the Component Matrix
-
partial_inverse_projection() - Partial Inverse Projection of a Columnwise Subset of Component Matrix
-
compose_projector() - Compose Two Projectors
-
compose_projectors() - Projector Composition
-
refit() - refit a model
-
nystrom_embedding() - Nystrom method for out-of-sample embedding
Cross Projection
Functions for creating and working with cross_projectors for two-way projection between two sets of variables or features.
-
project(<cross_projector>) - project a cross_projector instance
-
coef(<cross_projector>) - Extract coefficients from a cross_projector object
-
reprocess(<cross_projector>) - reprocess a cross_projector instance
-
shape(<cross_projector>) - shape of a cross_projector instance
-
components() - get the components
-
scores() - Retrieve the component scores
-
std_scores() - Compute standardized component scores
-
sdev() - standard deviations
-
ncomp() - Get the number of components
-
shape() - Shape of the Projector
-
is_orthogonal() - is it orthogonal
-
truncate() - truncate a component fit
-
block_lengths() - get block_lengths
-
block_indices() - get block_indices
-
nblocks() - get the number of blocks
-
prinang() - Compute principal angles for a set of subspaces
-
rotate() - Rotate a Component Solution
-
apply_rotation() - Apply rotation
-
convert_domain() - Transfer data from one input domain to another via common latent space
Resampling and Confidence Intervals
Functions for bootstrapping and estimating confidence intervals.
-
bootstrap() - Bootstrap Resampling for Multivariate Models
-
bootstrap(<pca>) - PCA Bootstrap Resampling
-
perm_ci() - Permutation Confidence Intervals
-
classifier() - Construct a Classifier
-
classifier(<discriminant_projector>) - Create a k-NN classifier for a discriminant projector
-
classifier(<multiblock_biprojector>) - Multiblock Bi-Projector Classifier
-
classifier(<projector>) - create
classifierfrom aprojector
-
rf_classifier() - construct a random forest wrapper classifier
-
rf_classifier(<projector>) - create a random forest classifier
-
predict(<classifier>) - predict with a classifier object
-
residuals() - Obtain residuals of a component model fit
-
center() - center a data matrix
-
pass() - a no-op pre-processing step
-
standardize() - center and scale each vector of a matrix
-
colscale() - scale a data matrix
-
prep() - prepare a dataset by applying a pre-processing pipeline
-
fresh() - Get a fresh pre-processing node cleared of any cached data
-
reprocess() - apply pre-processing parameters to a new data matrix
-
apply_transform() - apply a pre-processing transform
-
reverse_transform() - reverse a pre-processing transform
-
init_transform() - initialize a transform
-
concat_pre_processors() - bind together blockwise pre-processors
-
add_node() - add a pre-processing stage
-
print(<bi_projector>) - Pretty Print S3 Method for bi_projector Class
-
print(<bi_projector_union>) - Pretty Print S3 Method for bi_projector_union Class
-
print(<classifier>) - Pretty Print Method for
classifierObjects
-
print(<composed_projector>) - Pretty Print Method for
composed_projectorObjects
-
print(<multiblock_biprojector>) - Pretty Print Method for
multiblock_biprojectorObjects
-
print(<projector>) - Pretty Print Method for
projectorObjects
-
group_means() - Compute column-wise mean in X for each factor level of Y