Package index
-
pca() - Principal Components Analysis (PCA)
-
svd_wrapper() - Singular Value Decomposition (SVD) Wrapper
-
regress() - Multi-output linear regression
-
cPCAplus() - Contrastive PCA++ (cPCA++) Performs Contrastive PCA++ (cPCA++) to find directions that capture variation enriched in a "foreground" dataset relative to a "background" dataset. This implementation follows the cPCA++ approach which directly solves the generalized eigenvalue problem Rf v = lambda Rb v, where Rf and Rb are the covariance matrices of the foreground and background data, centered using the background mean.
-
geneig() - Generalized Eigenvalue Decomposition
Model classes for multivariate decompositions and extension
Generic S3 classes use to represented multivariate model fits
-
projector() - Construct a
projectorinstance
-
bi_projector() - Construct a bi_projector instance
-
bi_projector_union() - A Union of Concatenated
bi_projectorFits
-
discriminant_projector() - Construct a Discriminant Projector
-
cross_projector() - Two-way (cross) projection to latent components
-
multiblock_biprojector() - Create a Multiblock Bi-Projector
-
multiblock_projector() - Create a Multiblock Projector
-
project() - New sample projection
-
residualize() - Compute a regression model for each column in a matrix and return residual matrix
-
partial_project() - Partially project a new sample onto subspace
-
partial_projector() - Construct a partial projector
-
project_block() - Project a single "block" of data onto the subspace
-
project_vars() - Project one or more variables onto a subspace
-
transpose() - Transpose a model
-
reconstruct() - Reconstruct the data
-
inverse_projection() - Inverse of the Component Matrix
-
partial_inverse_projection() - Partial Inverse Projection of a Columnwise Subset of Component Matrix
-
compose_projector() - Compose Two Projectors
-
compose_partial_projector()`%>>%` - Compose Multiple Partial Projectors
-
refit() - refit a model
-
nystrom_approx() - Nyström approximation for kernel-based decomposition (Unified Version)
-
fit() - Fit a preprocessing pipeline
-
fit_transform() - Fit and transform data in one step
-
transform() - Transform data using a fitted preprocessing pipeline
-
inverse_transform() - Inverse transform data using a fitted preprocessing pipeline
Cross Projection
Functions for creating and working with cross_projectors for two-way projection between two sets of variables or features.
-
project(<cross_projector>) - project a cross_projector instance
-
coef(<cross_projector>) - Extract coefficients from a cross_projector object
-
reprocess(<cross_projector>) - reprocess a cross_projector instance
-
shape(<cross_projector>) - shape of a cross_projector instance
-
transfer() - Transfer data from one domain/block to another via a latent space
-
inverse_projection(<cross_projector>) - Default inverse_projection method for cross_projector
-
partial_inverse_projection(<cross_projector>) - Partial Inverse Projection of a Subset of the Loading Matrix in cross_projector
-
partial_project(<cross_projector>) - Partially project data for a cross_projector
-
components() - get the components
-
scores() - Retrieve the component scores
-
std_scores() - Compute standardized component scores
-
sdev() - standard deviations
-
ncomp() - Get the number of components
-
shape() - Shape of the Projector
-
is_orthogonal() - is it orthogonal
-
truncate() - truncate a component fit
-
block_lengths() - get block_lengths
-
block_indices() - get block_indices
-
nblocks() - get the number of blocks
-
prinang() - Calculate Principal Angles Between Subspaces
-
principal_angles() - Principal angles (two sub‑spaces)
-
variables_used() - Identify Original Variables Used by a Projector
-
vars_for_component() - Identify Original Variables for a Specific Component
-
rotate() - Rotate a Component Solution
-
apply_rotation() - Apply rotation
Resampling and Confidence Intervals
Functions for bootstrapping and estimating confidence intervals.
-
bootstrap() - Bootstrap Resampling for Multivariate Models
-
bootstrap_pca() - Fast, Exact Bootstrap for PCA Results from
pcafunction
-
perm_ci() - Permutation Confidence Intervals
-
perm_testperm_test.pcaperm_test.cross_projectorperm_test.discriminant_projectorperm_test.multiblock_biprojector - Generic Permutation-Based Test
-
cv() - Cross-validation Framework
-
cv_generic() - Generic cross-validation engine
-
classifier() - Construct a Classifier
-
classifier(<discriminant_projector>) - Create a k-NN classifier for a discriminant projector
-
classifier(<multiblock_biprojector>) - Multiblock Bi-Projector Classifier
-
classifier(<projector>) - create classifier from a projector
-
rf_classifier() - construct a random forest wrapper classifier
-
rf_classifier(<projector>) - Create a random forest classifier
-
predict(<classifier>) - Predict Class Labels using a Classifier Object
-
feature_importance() - Evaluate feature importance
-
feature_importance(<classifier>) - Evaluate Feature Importance for a Classifier
-
residuals() - Obtain residuals of a component model fit
-
measure_reconstruction_error() - Compute reconstruction-based error metrics
-
measure_interblock_transfer_error() - Compute inter-block transfer error metrics for a cross_projector
-
pca_outliers() - PCA Outlier Diagnostics
-
rank_score() - Calculate Rank Score for Predictions
-
subspace_similarity() - Compute subspace similarity
-
center() - center a data matrix
-
pass() - a no-op pre-processing step
-
standardize() - center and scale each vector of a matrix
-
colscale() - scale a data matrix
-
prep() - prepare a dataset by applying a pre-processing pipeline
-
fresh() - Get a fresh pre-processing node cleared of any cached data
-
reprocess() - apply pre-processing parameters to a new data matrix
-
apply_transform() - apply a pre-processing transform
-
reverse_transform() - reverse a pre-processing transform
-
init_transform() - initialize a transform
-
concat_pre_processors() - bind together blockwise pre-processors
-
add_node() - add a pre-processing stage
-
preprocess() - Convenience function for preprocessing workflow
-
check_fitted() - Check if preprocessor is fitted and error if not
-
is_fitted() - Check if a preprocessing object is fitted
-
mark_fitted() - Enhanced fitted state tracking
-
get_fitted_state() - Get fitted state from attributes
-
biplot(<pca>) - Biplot for PCA Objects (Enhanced with ggrepel)
-
screeplot() - Screeplot for PCA
-
screeplot(<pca>) - Screeplot for PCA
-
group_means() - Compute column-wise mean in X for each factor level of Y
-
robust_inv_vTv() - Possibly use ridge-regularized inversion of crossprod(v)
-
topk() - top-k accuracy indicator
-
reconstruct_new() - Reconstruct new data in a model's subspace
-
print(<bi_projector>) - Pretty Print S3 Method for bi_projector Class
-
print(<classifier>) - Pretty Print Method for
classifierObjects
-
print(<concat_pre_processor>) - Print a concat_pre_processor object
-
print(<multiblock_biprojector>) - Pretty Print Method for
multiblock_biprojectorObjects
-
print(<pca>) - Print Method for PCA Objects
-
print(<perm_test>) - Print Method for perm_test Objects
-
print(<perm_test_pca>) - Print Method for perm_test_pca Objects
-
print(<pre_processor>) - Print a pre_processor object
-
print(<prepper>) - Print a prepper pipeline
-
print(<regress>) - Pretty Print Method for
regressObjects
-
print(<rf_classifier>) - Pretty Print Method for
rf_classifierObjects
-
summary(<composed_projector>) - Summarize a Composed Projector
-
coef(<composed_projector>) - Get Coefficients of a Composed Projector
-
coef(<cross_projector>) - Extract coefficients from a cross_projector object
-
coef(<multiblock_projector>) - Coefficients for a Multiblock Projector
-
predict(<classifier>) - Predict Class Labels using a Classifier Object
-
predict(<discriminant_projector>) - Predict method for a discriminant_projector, supporting LDA or Euclid
-
predict(<rf_classifier>) - Predict Class Labels using a Random Forest Classifier Object
-
reprocess() - apply pre-processing parameters to a new data matrix
-
reprocess(<cross_projector>) - reprocess a cross_projector instance
-
reprocess(<nystrom_approx>) - Reprocess data for Nyström approximation
-
project() - New sample projection
-
project(<cross_projector>) - project a cross_projector instance
-
project(<nystrom_approx>) - Project new data using a Nyström approximation model
-
project_block() - Project a single "block" of data onto the subspace
-
project_block(<multiblock_projector>) - Project Data onto a Specific Block
-
project_vars() - Project one or more variables onto a subspace
-
projector() - Construct a
projectorinstance
-
truncate() - truncate a component fit
-
truncate(<composed_projector>) - Truncate a Composed Projector
-
block_indices() - get block_indices
-
block_indices(<multiblock_projector>) - Extract the Block Indices from a Multiblock Projector
-
inverse_projection() - Inverse of the Component Matrix
-
inverse_projection(<composed_projector>) - Compute the Inverse Projection for a Composed Projector
-
inverse_projection(<cross_projector>) - Default inverse_projection method for cross_projector
-
partial_inverse_projection() - Partial Inverse Projection of a Columnwise Subset of Component Matrix
-
partial_inverse_projection(<cross_projector>) - Partial Inverse Projection of a Subset of the Loading Matrix in cross_projector
-
partial_inverse_projection(<regress>) - Partial Inverse Projection for a
regressObject
-
partial_project() - Partially project a new sample onto subspace
-
partial_project(<composed_partial_projector>) - Partial Project Through a Composed Partial Projector
-
partial_project(<cross_projector>) - Partially project data for a cross_projector
-
partial_projector() - Construct a partial projector
-
reconstruct() - Reconstruct the data
-
reconstruct(<composed_projector>) - Reconstruct Data from Scores using a Composed Projector
-
reconstruct(<pca>) - Reconstruct Data from PCA Results
-
reconstruct_new() - Reconstruct new data in a model's subspace
-
rotate() - Rotate a Component Solution
-
rotate(<pca>) - Rotate PCA Loadings
-
std_scores() - Compute standardized component scores
-
std_scores(<svd>) - Calculate Standardized Scores for SVD results
-
is_orthogonal() - is it orthogonal
-
is_orthogonal(<projector>) - Stricter check for true orthogonality
-
add_node() - add a pre-processing stage
-
add_node(<prepper>) - Add a pre-processing node to a pipeline
-
shape() - Shape of the Projector
-
shape(<cross_projector>) - shape of a cross_projector instance
-
transfer() - Transfer data from one domain/block to another via a latent space
-
transfer(<cross_projector>) - Transfer from X domain to Y domain (or vice versa) in a cross_projector