fmri_lm_control() creates an fmri_lm_config object collecting all
options for robust and autoregressive modelling. It validates inputs and
applies defaults so downstream functions receive a single structured list.
Arguments
- robust_options
list of robust fitting options. See Details.
- ar_options
list of autoregressive modelling options. See Details.
- volume_weights_options
list of volume weighting options. See Details. For simple cases, use the
volume_weightsparameter infmri_lm()instead.- soft_subspace_options
list of soft subspace projection options. See Details. For simple cases, use the
nuisance_projectionparameter infmri_lm()instead.
Details
For common use cases, fmri_lm() provides convenience parameters that
are easier to use than these detailed option lists:
volume_weights = TRUEenables volume weighting with defaultsvolume_weights = "tukey"enables with Tukey methodnuisance_projection = Nenables soft projection with matrix Nnuisance_projection = "mask.nii"enables with mask file
Use the *_options lists below only when you need fine-grained control.
robust_options may contain:
type(FALSE, "huber", "bisquare")k_huberc_tukeymax_iterscale_scope("run", "global")reestimate_phi(logical)
ar_options may contain:
struct("iid", "ar1", "ar2", "arp")p(order for "arp")iter_gls(integer number of GLS iterations)global(logical, use global phi)voxelwise(logical)exact_first(logical)
volume_weights_options may contain:
enabled(logical, whether to compute and apply volume weights)method("inverse_squared", "soft_threshold", "tukey")threshold(numeric, DVARS threshold for weighting)weights(optional pre-computed weight vector)
soft_subspace_options may contain:
enabled(logical, whether to apply soft subspace projection)nuisance_mask(path to NIfTI mask or logical vector)nuisance_matrix(pre-computed nuisance timeseries matrix)lambda(numeric, "auto", or "gcv")warn_redundant(logical, warn if baseline has nuisance terms)