Package index
- 
          
MVPAModels - Pre-defined MVPA Classification Models
 
- 
          
add_interaction_contrasts() - Add Interaction Contrasts to an msreve_design
 
- 
          
average_labels() - Average NeuroVec Data by Labels
 
- 
          
balance_partitions() - Balance Cross-Validation Partitions
 
- 
          
binary_classification_result() - Classification results for binary outcome
 
- 
          
category_rdm() - Create Hypothesis RDM from Category Structure
 
- 
          
classification_result() - Create a 
classification_resultinstance 
- 
          
combine_prediction_tables() - Combine prediction tables
 
- 
          
contrast_rsa_model() - Constructor for contrast_rsa_model
 
- 
          
contrasts() - Generate Contrast Matrices
 
- 
          
create_dist() - Create a Distance Function Object
 
- 
          
bootstrap_blocked_cross_validation()blocked_cross_validation()sequential_blocked_cross_validation()custom_cross_validation() - bootstrap_blocked_cross_validation
 
- 
          
crossv_block() - Block Cross-Validation Data Preparation
 
- 
          
crossv_k() - K-fold Cross-Validation Data Preparation
 
- 
          
crossval_samples() - Cross-validation samples
 
- 
          
custom_performance() - Apply Custom Performance Metric to Prediction Result
 
- 
          
data_sample() - Extract Sample from Dataset
 
- 
          
cordist()mahadist()eucdist()robustmahadist()pcadist() - Distance Function Constructors
 
- 
          
evaluate_model.feature_rsa_model() - Evaluate model performance for feature RSA
 
- 
          
evaluate_model.vector_rsa_model() - Evaluate model performance for vector RSA
 
- 
          
feature_rsa_design() - Create a Feature-Based RSA Design
 
- 
          
feature_rsa_model() - Create a Feature-Based RSA Model
 
- 
          
feature_selection - Feature Selection Methods
 
- 
          
feature_selector() - Create a feature selection specification
 
- 
          
fit_model() - Fit Model
 
- 
          
format_result() - Format Result Object
 
- 
          
gen_sample_dataset() - Generate Sample Dataset for MVPA Analysis
 
- 
          
get_nfolds() - Get the Number of Folds
 
- 
          
get_samples() - Get Multiple Data Samples
 
- 
          
get_searchlight() - Generate Searchlight Iterator
 
- 
          
group_means() - Compute Group Means of a Matrix
 
- 
          
has_crossval() - Cross-Validation Availability
 
- 
          
has_test_set() - Test Set Availability
 
- 
          
kfold_cross_validation() - kfold_cross_validation
 
- 
          
load_model() - Load a Pre-defined MVPA Model
 
- 
          
make_feature_contrasts() - Generate Contrasts from a Feature Matrix (Optional PCA)
 
- 
          
manova_design() - Create a MANOVA Design
 
- 
          
manova_model() - Create a MANOVA Model
 
- 
          
merge_classif_results() - Merge Multiple Classification/Regression Results
 
- 
          
merge_predictions() - Merge Predictions
 
- 
          
merge_results(<manova_model>)merge_results(<mvpa_model>)merge_results(<binary_classification_result>)merge_results(<regression_result>)merge_results(<multiway_classification_result>)merge_results(<regional_mvpa_result>)merge_results(<rsa_model>)merge_results(<vector_rsa_model>)merge_results(<feature_rsa_model>) - Merge Results for MANOVA Model
 
- 
          
merge_results() - Merge Multiple Results
 
- 
          
msreve_design() - Constructor for msreve_design
 
- 
          
multiway_classification_result() - Create a Multiway Classification Result Object
 
- 
          
mvpa_dataset() - Create an MVPA Dataset Object
 
- 
          
mvpa_design() - Create an MVPA Design Object
 
- 
          
mvpa_iterate() - Iterate MVPA Analysis Over Multiple ROIs
 
- 
          
mvpa_model() - Create an MVPA Model
 
- 
          
mvpa_surface_dataset() - Create a Surface-Based MVPA Dataset Object
 
- 
          
mvpa_sysinfo() - Report System and Package Information for rMVPA
 
- 
          
new-analysis-overview - Extending the MVPA Framework: Creating a New Analysis Type
 
- 
          
nobs() - Get Number of Observations
 
- 
          
nresponses() - Number of Response Categories
 
- 
          
orthogonalize_contrasts() - Orthogonalize a Contrast Matrix
 
- 
          
performance() - Compute Performance Metrics
 
- 
          
performance(<regression_result>) - Calculate Performance Metrics for Regression Result
 
- 
          
predict_model() - Predict Model Output
 
- 
          
predicted_class() - Calculate the Predicted Class from Probability Matrix
 
- 
          
prep_regional() - Prepare regional data for MVPA analysis
 
- 
          
print(<feature_rsa_design>) - Print Method for Feature RSA Design
 
- 
          
print(<feature_rsa_model>) - Print Method for Feature RSA Model
 
- 
          
print(<vector_rsa_design>) - Print Method for vector_rsa_design
 
- 
          
print(<vector_rsa_model>) - Print Method for vector_rsa_model
 
- 
          
prob_observed() - Probability of Observed Class
 
- 
          
regional_mvpa_result() - Create a 
regional_mvpa_resultinstance 
- 
          
register_mvpa_model() - Register a Custom MVPA Model
 
- 
          
regression_result() - Create a Regression Result Object
 
- 
          
rsa_design() - Construct a design for an RSA (Representational Similarity Analysis) model
 
- 
          
rsa_model() - Construct an RSA (Representational Similarity Analysis) model
 
- 
          
run_custom_regional() - Run a Custom Analysis Function Regionally
 
- 
          
run_custom_searchlight() - Run a Custom Analysis Function in a Searchlight
 
- 
          
run_regional()run_regional_base() - Region of Interest Based MVPA Analysis
 
- 
          
run_searchlight() - Run Searchlight Analysis
 
- 
          
run_searchlight(<contrast_rsa_model>) - Run Searchlight Analysis for Contrast RSA Model
 
- 
          
run_searchlight(<default>) - Default method for run_searchlight
 
- 
          
run_searchlight(<vector_rsa>) - run_searchlight method for vector_rsa_model
 
- 
          
run_searchlight_base() - A "base" function for searchlight analysis
 
- 
          
save_results() - Save searchlight results to disk (S3 generic)
 
- 
          
second_order_similarity() - Compute Second-Order Similarity Scores
 
- 
          
select_features() - Select Features
 
- 
          
strip_dataset() - Strip Dataset from Model Specification
 
- 
          
sub_result(<multiway_classification_result>)sub_result(<binary_classification_result>) - Subset Multiway Classification Result
 
- 
          
sub_result() - Extract Row-wise Subset of a Result
 
- 
          
summary(<feature_rsa_model>) - Summary Method for Feature RSA Model
 
- 
          
table_to_rdm() - Convert Similarity Table to RDM
 
- 
          
temporal() - Temporal RDM wrapper for formula usage
 
- 
          
temporal_nuisance_for_msreve() - Temporal nuisance RDM at condition level (for MS-ReVE)
 
- 
          
temporal_rdm() - Temporal/ordinal nuisance RDM (trial-level)
 
- 
          
test_design() - Test Design Extraction
 
- 
          
train_indices() - Get Training Indices for a Fold
 
- 
          
transform_contrasts() - Apply Transformations to an Existing Contrast Matrix
 
- 
          
tune_grid() - Extract Tuning Grid
 
- 
          
twofold_blocked_cross_validation() - twofold_blocked_cross_validation
 
- 
          
vector_rsa_design() - Construct a design for a vectorized RSA model
 
- 
          
vector_rsa_model() - Create a vectorized RSA model
 
- 
          
y_test() - Test Labels/Response Extraction
 
- 
          
y_train() - Training Labels/Response Extraction