Skip to contents

All Functions

All functions exported by rMVPA

MVPAModels
Pre-defined MVPA Classification Models
binary_classification_result()
Classification results for binary outcome
classification_result()
Create a classification_result instance
combine_prediction_tables()
Combine prediction tables
compute_performance()
Compute Performance for an Object
create_dist()
Create a Distance Function Object
bootstrap_blocked_cross_validation() blocked_cross_validation() sequential_blocked_cross_validation() custom_cross_validation()
bootstrap_blocked_cross_validation
crossv_block()
Block Cross-Validation Data Preparation
crossv_k()
K-fold Cross-Validation Data Preparation
crossval_samples()
crossval_samples
custom_performance()
Apply Custom Performance Metric to Prediction Result
data_sample()
Extract Sample from Dataset
cordist() mahadist() eucdist() robustmahadist() pcadist()
Distance Function Constructors
evaluate_model.feature_rsa_model()
Evaluate Method for Feature RSA Model
feature_rsa_design()
Create a Feature-Based RSA Design
feature_rsa_model()
Create a Feature-Based RSA Model
feature_selection
Feature Selection Methods
feature_selector()
Create a feature selection specification
fit_model()
Fit Model
format_result()
Format Result Object
gen_sample_dataset()
Generate Sample Dataset for MVPA Analysis
get_samples()
Get Multiple Data Samples
get_searchlight()
Generate Searchlight Iterator
group_means()
Compute Group Means of a Matrix
has_crossval()
Requires cross-validation to be performed
has_test_set()
Test Set Availability
kfold_cross_validation()
kfold_cross_validation
load_model()
Load a Pre-defined MVPA Model
manova_design()
Create a MANOVA Design
manova_model()
Create a MANOVA Model
merge_classif_results()
Merge Multiple Classification/Regression Results
merge_predictions()
Merge Predictions
merge_results()
Merge Multiple Results
merge_results(<feature_rsa_model>)
Merge Multiple Results for Feature RSA Model
merge_results(<regional_mvpa_result>)
Merge regional MVPA results
multiway_classification_result()
Create a Multiway Classification Result Object
mvpa_dataset()
Create an MVPA Dataset Object
mvpa_design()
Create an MVPA Design Object
mvpa_iterate()
Iterate MVPA Analysis Over Multiple ROIs
mvpa_model()
Create an MVPA Model
mvpa_surface_dataset()
Create a Surface-Based MVPA Dataset Object
new-analysis-overview
Extending the MVPA Framework: Creating a New Analysis Type
nobs()
Get Number of Observations
nresponses()
Number of Response Categories
pairwise_dist(<cordist>)
Compute Pairwise Correlation Distances
pairwise_dist(<euclidean>)
Compute Pairwise Euclidean Distances
pairwise_dist(<mahalanobis>)
Compute Pairwise Mahalanobis Distances
pairwise_dist(<pcadist>)
Compute Pairwise PCA-Based Distances
pairwise_dist(<robustmahadist>)
Compute Pairwise Robust Mahalanobis Distances
performance()
Compute Performance Metrics
performance(<regression_result>)
Calculate Performance Metrics for Regression Result
predict_model.feature_rsa_model()
Predict Method for Feature RSA Model
predicted_class()
Calculate the Predicted Class from Probability Matrix
prep_regional()
Prepare regional data for MVPA analysis
print(<feature_rsa_design>)
Print Method for Feature RSA Design
print(<feature_rsa_model>)
Print Method for Feature RSA Model
print(<vector_rsa_design>)
Print Method for vector_rsa_design
print(<vector_rsa_model>)
Print Method for vector_rsa_model
prob_observed()
Probability of Observed Class
rMVPA
rMVPA: A package for multi-voxel pattern analysis (MVPA)
regional_mvpa_result()
Create a regional_mvpa_result instance
regression_result()
Create a Regression Result Object
rsa_design()
Construct a design for an RSA (Representational Similarity Analysis) model
rsa_model()
Construct an RSA (Representational Similarity Analysis) model
run_regional()
Region of Interest Based MVPA Analysis
run_regional(<default>)
Default method for run_regional
run_regional(<feature_rsa_model>)
Specialized run_regional method for feature_rsa_model
run_regional(<mvpa_model>)
Specialized run_regional method for mvpa_model
run_regional(<rsa_model>)
Specialized run_regional method for rsa_model
run_regional_base()
A "base" function that does the standard regional analysis pipeline
run_searchlight()
Run Searchlight Analysis
run_searchlight(<default>)
Default method for run_searchlight
run_searchlight(<vector_rsa>)
run_searchlight method for vector_rsa_model
run_searchlight_base()
A "base" function for searchlight analysis
second_order_similarity()
Compute Second-Order Similarity Scores
select_features(<FTest>)
Perform feature selection using the F-test method
select_features()
Select Features
select_features(<catscore>)
Perform feature selection using the CATSCORE method
sub_result()
Extract Row-wise Subset of a Result
sub_result(<binary_classification_result>)
Subset Binary Classification Result
sub_result(<multiway_classification_result>)
Subset Multiway Classification Result
summary(<feature_rsa_model>)
Summary Method for Feature RSA Model
test_design()
Test Design Extraction
train_model()
Train Model
train_model(<manova_model>)
Train a MANOVA Model
train_model(<mvpa_model>)
Train an MVPA Model
train_model(<rsa_model>)
Train an RSA Model
train_model(<vector_rsa_model>)
Train a vector RSA model
tune_grid()
Tune Grid Extraction
twofold_blocked_cross_validation()
twofold_blocked_cross_validation
vector_rsa_design()
Construct a design for a vectorized RSA model
vector_rsa_model()
Create a vectorized RSA model
y_test()
Test Labels/Response Extraction
y_train()
Training Labels/Response Extraction