Package index
-
MVPAModels
- Pre-defined MVPA Classification Models
-
add_interaction_contrasts()
- Add Interaction Contrasts to an msreve_design
-
average_labels()
- Average NeuroVec Data by Labels
-
balance_partitions()
- Balance Cross-Validation Partitions
-
binary_classification_result()
- Classification results for binary outcome
-
category_rdm()
- Create Hypothesis RDM from Category Structure
-
classification_result()
- Create a
classification_result
instance
-
combine_prediction_tables()
- Combine prediction tables
-
contrast_rsa_model()
- Constructor for contrast_rsa_model
-
contrasts()
- Generate Contrast Matrices
-
create_dist()
- Create a Distance Function Object
-
bootstrap_blocked_cross_validation()
blocked_cross_validation()
sequential_blocked_cross_validation()
custom_cross_validation()
- bootstrap_blocked_cross_validation
-
crossv_block()
- Block Cross-Validation Data Preparation
-
crossv_k()
- K-fold Cross-Validation Data Preparation
-
crossval_samples()
- Cross-validation samples
-
custom_performance()
- Apply Custom Performance Metric to Prediction Result
-
data_sample()
- Extract Sample from Dataset
-
cordist()
mahadist()
eucdist()
robustmahadist()
pcadist()
- Distance Function Constructors
-
evaluate_model.feature_rsa_model()
- Evaluate model performance for feature RSA
-
evaluate_model.vector_rsa_model()
- Evaluate model performance for vector RSA
-
feature_rsa_design()
- Create a Feature-Based RSA Design
-
feature_rsa_model()
- Create a Feature-Based RSA Model
-
feature_selection
- Feature Selection Methods
-
feature_selector()
- Create a feature selection specification
-
fit_model()
- Fit Model
-
format_result()
- Format Result Object
-
gen_sample_dataset()
- Generate Sample Dataset for MVPA Analysis
-
get_nfolds()
- Get the Number of Folds
-
get_samples()
- Get Multiple Data Samples
-
get_searchlight()
- Generate Searchlight Iterator
-
group_means()
- Compute Group Means of a Matrix
-
has_crossval()
- Cross-Validation Availability
-
has_test_set()
- Test Set Availability
-
kfold_cross_validation()
- kfold_cross_validation
-
load_model()
- Load a Pre-defined MVPA Model
-
make_feature_contrasts()
- Generate Contrasts from a Feature Matrix (Optional PCA)
-
manova_design()
- Create a MANOVA Design
-
manova_model()
- Create a MANOVA Model
-
merge_classif_results()
- Merge Multiple Classification/Regression Results
-
merge_predictions()
- Merge Predictions
-
merge_results(<manova_model>)
merge_results(<mvpa_model>)
merge_results(<binary_classification_result>)
merge_results(<regression_result>)
merge_results(<multiway_classification_result>)
merge_results(<regional_mvpa_result>)
merge_results(<rsa_model>)
merge_results(<vector_rsa_model>)
merge_results(<feature_rsa_model>)
- Merge Results for MANOVA Model
-
merge_results()
- Merge Multiple Results
-
msreve_design()
- Constructor for msreve_design
-
multiway_classification_result()
- Create a Multiway Classification Result Object
-
mvpa_dataset()
- Create an MVPA Dataset Object
-
mvpa_design()
- Create an MVPA Design Object
-
mvpa_iterate()
- Iterate MVPA Analysis Over Multiple ROIs
-
mvpa_model()
- Create an MVPA Model
-
mvpa_surface_dataset()
- Create a Surface-Based MVPA Dataset Object
-
mvpa_sysinfo()
- Report System and Package Information for rMVPA
-
new-analysis-overview
- Extending the MVPA Framework: Creating a New Analysis Type
-
nobs()
- Get Number of Observations
-
nresponses()
- Number of Response Categories
-
orthogonalize_contrasts()
- Orthogonalize a Contrast Matrix
-
performance()
- Compute Performance Metrics
-
performance(<regression_result>)
- Calculate Performance Metrics for Regression Result
-
predict_model()
- Predict Model Output
-
predicted_class()
- Calculate the Predicted Class from Probability Matrix
-
prep_regional()
- Prepare regional data for MVPA analysis
-
print(<feature_rsa_design>)
- Print Method for Feature RSA Design
-
print(<feature_rsa_model>)
- Print Method for Feature RSA Model
-
print(<vector_rsa_design>)
- Print Method for vector_rsa_design
-
print(<vector_rsa_model>)
- Print Method for vector_rsa_model
-
prob_observed()
- Probability of Observed Class
-
regional_mvpa_result()
- Create a
regional_mvpa_result
instance
-
register_mvpa_model()
- Register a Custom MVPA Model
-
regression_result()
- Create a Regression Result Object
-
rsa_design()
- Construct a design for an RSA (Representational Similarity Analysis) model
-
rsa_model()
- Construct an RSA (Representational Similarity Analysis) model
-
run_custom_regional()
- Run a Custom Analysis Function Regionally
-
run_custom_searchlight()
- Run a Custom Analysis Function in a Searchlight
-
run_regional()
run_regional_base()
- Region of Interest Based MVPA Analysis
-
run_searchlight()
- Run Searchlight Analysis
-
run_searchlight(<contrast_rsa_model>)
- Run Searchlight Analysis for Contrast RSA Model
-
run_searchlight(<default>)
- Default method for run_searchlight
-
run_searchlight(<vector_rsa>)
- run_searchlight method for vector_rsa_model
-
run_searchlight_base()
- A "base" function for searchlight analysis
-
save_results()
- Save searchlight results to disk (S3 generic)
-
second_order_similarity()
- Compute Second-Order Similarity Scores
-
select_features()
- Select Features
-
strip_dataset()
- Strip Dataset from Model Specification
-
sub_result(<multiway_classification_result>)
sub_result(<binary_classification_result>)
- Subset Multiway Classification Result
-
sub_result()
- Extract Row-wise Subset of a Result
-
summary(<feature_rsa_model>)
- Summary Method for Feature RSA Model
-
table_to_rdm()
- Convert Similarity Table to RDM
-
temporal()
- Temporal RDM wrapper for formula usage
-
temporal_nuisance_for_msreve()
- Temporal nuisance RDM at condition level (for MS-ReVE)
-
temporal_rdm()
- Temporal/ordinal nuisance RDM (trial-level)
-
test_design()
- Test Design Extraction
-
train_indices()
- Get Training Indices for a Fold
-
transform_contrasts()
- Apply Transformations to an Existing Contrast Matrix
-
tune_grid()
- Extract Tuning Grid
-
twofold_blocked_cross_validation()
- twofold_blocked_cross_validation
-
vector_rsa_design()
- Construct a design for a vectorized RSA model
-
vector_rsa_model()
- Create a vectorized RSA model
-
y_test()
- Test Labels/Response Extraction
-
y_train()
- Training Labels/Response Extraction