Skip to contents

All Functions

All functions exported by rMVPA

MVPAModels
Pre-defined MVPA Classification Models
add_interaction_contrasts()
Add Interaction Contrasts to an msreve_design
average_labels()
Average NeuroVec Data by Labels
balance_partitions()
Balance Cross-Validation Partitions
binary_classification_result()
Classification results for binary outcome
category_rdm()
Create Hypothesis RDM from Category Structure
classification_result()
Create a classification_result instance
combine_prediction_tables()
Combine prediction tables
contrast_rsa_model()
Constructor for contrast_rsa_model
contrasts()
Generate Contrast Matrices
create_dist()
Create a Distance Function Object
bootstrap_blocked_cross_validation() blocked_cross_validation() sequential_blocked_cross_validation() custom_cross_validation()
bootstrap_blocked_cross_validation
crossv_block()
Block Cross-Validation Data Preparation
crossv_k()
K-fold Cross-Validation Data Preparation
crossval_samples()
Cross-validation samples
custom_performance()
Apply Custom Performance Metric to Prediction Result
data_sample()
Extract Sample from Dataset
cordist() mahadist() eucdist() robustmahadist() pcadist()
Distance Function Constructors
evaluate_model.feature_rsa_model()
Evaluate model performance for feature RSA
evaluate_model.vector_rsa_model()
Evaluate model performance for vector RSA
feature_rsa_design()
Create a Feature-Based RSA Design
feature_rsa_model()
Create a Feature-Based RSA Model
feature_selection
Feature Selection Methods
feature_selector()
Create a feature selection specification
fit_model()
Fit Model
format_result()
Format Result Object
gen_sample_dataset()
Generate Sample Dataset for MVPA Analysis
get_nfolds()
Get the Number of Folds
get_samples()
Get Multiple Data Samples
get_searchlight()
Generate Searchlight Iterator
group_means()
Compute Group Means of a Matrix
has_crossval()
Cross-Validation Availability
has_test_set()
Test Set Availability
kfold_cross_validation()
kfold_cross_validation
load_model()
Load a Pre-defined MVPA Model
make_feature_contrasts()
Generate Contrasts from a Feature Matrix (Optional PCA)
manova_design()
Create a MANOVA Design
manova_model()
Create a MANOVA Model
merge_classif_results()
Merge Multiple Classification/Regression Results
merge_predictions()
Merge Predictions
merge_results(<manova_model>) merge_results(<mvpa_model>) merge_results(<binary_classification_result>) merge_results(<regression_result>) merge_results(<multiway_classification_result>) merge_results(<regional_mvpa_result>) merge_results(<rsa_model>) merge_results(<vector_rsa_model>) merge_results(<feature_rsa_model>)
Merge Results for MANOVA Model
merge_results()
Merge Multiple Results
msreve_design()
Constructor for msreve_design
multiway_classification_result()
Create a Multiway Classification Result Object
mvpa_dataset()
Create an MVPA Dataset Object
mvpa_design()
Create an MVPA Design Object
mvpa_iterate()
Iterate MVPA Analysis Over Multiple ROIs
mvpa_model()
Create an MVPA Model
mvpa_surface_dataset()
Create a Surface-Based MVPA Dataset Object
mvpa_sysinfo()
Report System and Package Information for rMVPA
new-analysis-overview
Extending the MVPA Framework: Creating a New Analysis Type
nobs()
Get Number of Observations
nresponses()
Number of Response Categories
orthogonalize_contrasts()
Orthogonalize a Contrast Matrix
performance()
Compute Performance Metrics
performance(<regression_result>)
Calculate Performance Metrics for Regression Result
predict_model()
Predict Model Output
predicted_class()
Calculate the Predicted Class from Probability Matrix
prep_regional()
Prepare regional data for MVPA analysis
print(<feature_rsa_design>)
Print Method for Feature RSA Design
print(<feature_rsa_model>)
Print Method for Feature RSA Model
print(<vector_rsa_design>)
Print Method for vector_rsa_design
print(<vector_rsa_model>)
Print Method for vector_rsa_model
prob_observed()
Probability of Observed Class
regional_mvpa_result()
Create a regional_mvpa_result instance
register_mvpa_model()
Register a Custom MVPA Model
regression_result()
Create a Regression Result Object
rsa_design()
Construct a design for an RSA (Representational Similarity Analysis) model
rsa_model()
Construct an RSA (Representational Similarity Analysis) model
run_custom_regional()
Run a Custom Analysis Function Regionally
run_custom_searchlight()
Run a Custom Analysis Function in a Searchlight
run_regional() run_regional_base()
Region of Interest Based MVPA Analysis
run_searchlight()
Run Searchlight Analysis
run_searchlight(<contrast_rsa_model>)
Run Searchlight Analysis for Contrast RSA Model
run_searchlight(<default>)
Default method for run_searchlight
run_searchlight(<vector_rsa>)
run_searchlight method for vector_rsa_model
run_searchlight_base()
A "base" function for searchlight analysis
save_results()
Save searchlight results to disk (S3 generic)
second_order_similarity()
Compute Second-Order Similarity Scores
select_features()
Select Features
strip_dataset()
Strip Dataset from Model Specification
sub_result(<multiway_classification_result>) sub_result(<binary_classification_result>)
Subset Multiway Classification Result
sub_result()
Extract Row-wise Subset of a Result
summary(<feature_rsa_model>)
Summary Method for Feature RSA Model
table_to_rdm()
Convert Similarity Table to RDM
temporal()
Temporal RDM wrapper for formula usage
temporal_nuisance_for_msreve()
Temporal nuisance RDM at condition level (for MS-ReVE)
temporal_rdm()
Temporal/ordinal nuisance RDM (trial-level)
test_design()
Test Design Extraction
train_indices()
Get Training Indices for a Fold
transform_contrasts()
Apply Transformations to an Existing Contrast Matrix
tune_grid()
Extract Tuning Grid
twofold_blocked_cross_validation()
twofold_blocked_cross_validation
vector_rsa_design()
Construct a design for a vectorized RSA model
vector_rsa_model()
Create a vectorized RSA model
y_test()
Test Labels/Response Extraction
y_train()
Training Labels/Response Extraction