Function reference
-
binary_classification_result()
- Classification results for binary outcome
-
classification_result()
- Create a
classification_result
instance
-
combine_prediction_tables()
- Combine prediction tables
-
compute_performance()
- Compute Performance Metrics for Classification/Regression Results
-
create_dist()
- Create Distance Function Object
-
bootstrap_blocked_cross_validation()
blocked_cross_validation()
sequential_blocked_cross_validation()
custom_cross_validation()
- bootstrap_blocked_cross_validation
-
crossv_block()
- Block Cross-Validation Data Preparation
-
crossv_k()
- K-fold Cross-Validation Data Preparation
-
crossval_samples()
- crossval_samples
-
custom_performance()
- Apply Custom Performance Metric to Prediction Result
-
data_sample()
- Extract Sample from Dataset
-
cordist()
mahadist()
eucdist()
robustmahadist()
pcadist()
- Distance Function Constructors
-
external_crossval()
- External Cross-Validation
-
feature_rsa_iterate()
- feature_rsa_iterate
-
feature_selector()
- Create a feature selection specification
-
fit_model()
- Fit Model
-
fit_model(<mvpa_model>)
- Fit an MVPA model
-
gen_sample_dataset()
- gen_sample_dataset
-
get_samples()
- Get Multiple Data Samples
-
get_searchlight()
- Generate Searchlight Iterator
-
group_means()
- Compute Group Means of a Matrix
-
has_test_set()
- Test Set Availability
-
kfold_cross_validation()
- kfold_cross_validation
-
list_model()
- a list of model fits
-
load_model()
- load_model
-
manova_design()
- Create a MANOVA Design
-
manova_iterate()
- MANOVA Iteration for Voxel Sets
-
manova_model()
- Create a MANOVA Model
-
merge_predictions()
- Merge predictions from multiple models
-
merge_results()
- Merge Multiple Classification/Regression Results
-
merge_results(<regional_mvpa_result>)
- Merge regional MVPA results
-
multiway_classification_result()
- Create a Multiway Classification Result Object
-
mvpa_dataset()
- mvpa_dataset
-
mvpa_design()
- Create an MVPA Design Object
-
mvpa_iterate()
- MVPA Iteration for Voxel Sets with Parallelization
-
mvpa_model()
- Create an MVPA Model
-
mvpa_surface_dataset()
- mvpa_surface_dataset
-
nobs()
- Get Number of Observations
-
nresponses()
- Number of response categories
-
pairwise_dist(<cordist>)
- Compute Pairwise Correlation Distances
-
pairwise_dist(<euclidean>)
- Compute Pairwise Euclidean Distances
-
pairwise_dist(<mahalanobis>)
- Compute Pairwise Mahalanobis Distances
-
pairwise_dist(<robustmahadist>)
- Compute Pairwise Robust Mahalanobis Distances
-
performance()
- Compute Performance Metrics for Classification/Regression Results
-
performance(<regression_result>)
- Calculate Performance Metrics for Regression Result
-
predict(<class_model_fit>)
- This function predicts class labels and probabilities for new data using a fitted model.
-
predict(<regression_model_fit>)
- Predict continuous values for a new dataset using a regression model
-
predicted_class()
- Calculate the Predicted Class from Probability Matrix
-
prep_regional()
- Prepare regional data for MVPA analysis
-
prob_observed()
- Probability of observed class
-
rMVPA
- rMVPA: A package for multi-voxel pattern analysis (MVPA)
-
regional_mvpa_result()
- Create a
regional_mvpa_result
instance
-
regression_result()
- Create a Regression Result Object
-
rsa_design()
- Construct a design for an RSA (Representational Similarity Analysis) model
-
rsa_iterate()
- rsa_iterate
-
rsa_model()
- Construct an RSA (Representational Similarity Analysis) model
-
rsa_model_mat()
- Construct a model matrix for an RSA (Representational Similarity Analysis) design
-
run_regional()
- Region of interest based MVPA analysis
-
run_regional(<mvpa_model>)
- Run regional MVPA analysis on a specified MVPA model
-
run_regional(<rsa_model>)
- Run regional RSA analysis on a specified RSA model
-
run_searchlight()
- run_searchlight
-
second_order_similarity()
- Compute Second-Order Similarity Scores
-
select_features(<FTest>)
- Perform feature selection using the F-test method
-
select_features()
- Select Features
-
select_features(<catscore>)
- Perform feature selection using the CATSCORE method
-
sub_result()
- Extract Row-wise Subset of a Result Object
-
sub_result(<binary_classification_result>)
- Subset Binary Classification Result
-
sub_result(<multiway_classification_result>)
- Subset Multiway Classification Result
-
test_design()
- Test Design Extraction
-
train_model()
- Train Model
-
train_model(<feature_rsa_model>)
- Train an RSA Model
-
train_model(<manova_model>)
- Train a MANOVA Model
-
train_model(<mvpa_model>)
- Train an MVPA Model
-
train_model(<rsa_model>)
- Train an RSA Model
-
train_model(<vector_rsa_model>)
- Train a vector RSA model
-
tune_grid()
- Tune Grid Extraction
-
twofold_blocked_cross_validation()
- twofold_blocked_cross_validation
-
vector_rsa_design()
- Construct a design for a vectorized RSA model
-
vector_rsa_model()
- Create a vectorized RSA model
-
y_test()
- Test Labels/Response Extraction
-
y_train()
- Training Labels/Response Extraction