Skip to contents

Construct a cross-validation specification that randomly partitions the input set into nfolds folds.

Usage

kfold_cross_validation(len, nfolds = 10)

Arguments

len

An integer representing the number of observations.

nfolds

An integer specifying the number of cross-validation folds.

Value

An object of class "kfold_cross_validation", "cross_validation", and "list" containing the block_var and nfolds.

Details

This function creates a k-fold cross-validation scheme for cases where data needs to be split into a specified number of folds for evaluation. It returns an object of class "kfold_cross_validation", "cross_validation", and "list".

Examples

cval <- kfold_cross_validation(len=100, nfolds=10)
samples <- crossval_samples(cval, data=as.data.frame(matrix(rnorm(100*10), 100, 10)), y=rep(letters[1:5],20))
#> Error in UseMethod("crossval_samples"): no applicable method for 'crossval_samples' applied to an object of class "c('kfold_cross_validation', 'cross_validation', 'list')"
stopifnot(nrow(samples) == 10)
#> Error: object 'samples' not found