Skip to contents

Performs multivariate pattern analysis (MVPA) across multiple regions of interest (ROIs) using batch processing and parallel computation.

Usage

mvpa_iterate(
  mod_spec,
  vox_list,
  ids = 1:length(vox_list),
  batch_size = as.integer(0.1 * length(ids)),
  verbose = TRUE,
  processor = NULL
)

Arguments

mod_spec

An MVPA model specification object containing the dataset to analyze, compute_performance (logical indicating whether to compute performance metrics), and return_predictions (logical indicating whether to return predictions).

vox_list

A list of voxel indices or coordinates defining each ROI to analyze.

ids

Vector of identifiers for each ROI analysis. Defaults to 1:length(vox_list).

batch_size

Integer specifying number of ROIs to process per batch. Defaults to 10% of total ROIs.

verbose

Logical indicating whether to print progress messages. Defaults to TRUE.

processor

Optional custom processing function. If NULL, uses default processor. Must accept parameters (obj, roi, rnum) and return a tibble.

Value

A tibble containing results for each ROI with columns:

result

List column of analysis results (NULL if return_predictions=FALSE).

indices

List column of ROI indices used.

performance

List column of performance metrics (if computed).

id

ROI identifier.

error

Logical indicating if an error occurred.

error_message

Error message if applicable.

warning

Logical indicating if a warning occurred.

warning_message

Warning message if applicable.

Details

The function processes ROIs in batches to manage memory usage. For each batch:

  1. Extracts ROI data from the dataset.

  2. Filters out ROIs with fewer than 2 voxels.

  3. Processes each ROI using either the default or custom processor.

  4. Combines results across all batches.