Create a classification_result
instance
classification_result.Rd
Constructs a classification result object based on the observed and predicted values, as well as other optional parameters.
Usage
classification_result(
observed,
predicted,
probs,
testind = NULL,
test_design = NULL,
predictor = NULL
)
Arguments
- observed
A vector of observed or true values.
- predicted
A vector of predicted values.
- probs
A
matrix
of predicted probabilities, with one column per level.- testind
The row indices of the test observations (optional).
- test_design
An optional design for the test data.
- predictor
An optional predictor object.
Value
A classification result object, which can be one of: regression_result
,
binary_classification_result
, or multiway_classification_result
.
See also
Other classification_result:
binary_classification_result()
,
multiway_classification_result()
,
regression_result()
Examples
# A vector of observed values
yobs <- factor(rep(letters[1:4], 5))
# Predicted probabilities
probs <- data.frame(a = runif(1:20), b = runif(1:20), c = runif(1:20), d = runif(1:20))
probs <- sweep(probs, 1, rowSums(probs), "/")
# Get the max probability per row and use this to determine the predicted class
maxcol <- max.col(probs)
predicted <- levels(yobs)[maxcol]
# Construct a classification result
cres <- classification_result(yobs, predicted, probs)
# Compute default performance measures (Accuracy, AUC)
performance(cres)
#> Accuracy AUC
#> 0.20000000 -0.02666667