load_model
load_model.Rd
load_model
Examples
load_model("sda")
#> $label
#> [1] "sda"
#>
#> $library
#> [1] "sda"
#>
#> $loop
#> NULL
#>
#> $type
#> [1] "Classification"
#>
#> $parameters
#> parameter class label
#> 1 diagonal logical Diagonalize
#> 2 lambda numeric shrinkage
#>
#> $grid
#> function (x, y, len = NULL, search = "grid")
#> {
#> if (search == "grid") {
#> out <- data.frame(diagonal = FALSE, lambda = seq(0, 1,
#> length = len))
#> }
#> else {
#> out <- data.frame(lambda = runif(len, min = 0, 1), diagonal = sample(c(TRUE,
#> FALSE), size = len, replace = TRUE))
#> }
#> out
#> }
#>
#> $fit
#> function (x, y, wts, param, lev, last, classProbs, ...)
#> sda::sda(as.matrix(x), y, diagonal = param$diagonal, lambda = param$lambda,
#> ...)
#>
#> $predict
#> function (modelFit, newdata, submodels = NULL)
#> sda::predict.sda(modelFit, as.matrix(newdata))$class
#>
#> $prob
#> function (modelFit, newdata, submodels = NULL)
#> sda::predict.sda(modelFit, as.matrix(newdata))$posterior
#>
#> $predictors
#> function (x, ...)
#> {
#> colnames(x$beta)
#> }
#>
#> $levels
#> function (x)
#> x$obsLevels
#>
#> $tags
#> [1] "Discriminant Analysis" "Regularization" "Linear Classifier"
#>
#> $sort
#> function (x)
#> x[order(x$diagonal, x$lambda), ]
#>