Load a Pre-defined MVPA Model
load_model.Rd
Retrieves a model specification from either the pre-defined set of MVPA models or from caret's model library.
Arguments
- name
Character string specifying the model to load. Can be either:
A pre-defined MVPA model name:
- corclass
Correlation-based classifier with template matching
- sda_notune
Simple Shrinkage Discriminant Analysis without tuning
- sda_boot
SDA with bootstrap resampling
- glmnet_opt
Elastic net with EPSGO parameter optimization
- sparse_sda
SDA with sparsity constraints
- sda_ranking
SDA with automatic feature ranking
- mgsda
Multi-Group Sparse Discriminant Analysis
- lda_thomaz
Modified LDA for high-dimensional data
- hdrda
High-Dimensional Regularized Discriminant Analysis
Any valid model name from caret's model library (e.g., "rf" for random forest, "svmRadial" for SVM)
Value
A list containing the model specification with the following components:
- type
Model type: "Classification" or "Regression"
- library
Required R package(s) for the model
- label
Human-readable model name
- parameters
Data frame describing tunable parameters
- grid
Function to generate parameter tuning grid
- fit
Function to fit the model
- predict
Function to generate predictions
- prob
Function to generate class probabilities (classification only)
See also
MVPAModels
for the complete list of available custom MVPA models
getModelInfo
for the complete list of available caret models
mvpa_model
for using these models in MVPA analyses
Examples
# Load custom MVPA model
model <- load_model("sda_notune")
# Load correlation classifier with parameter tuning options
corr_model <- load_model("corclass")
print(corr_model$parameters) # View tunable parameters
#> parameters class label
#> 1 method character correlation type: pearson, spearman, or kendall
#> 2 robust logical mean or huber
# Load caret's random forest model
rf_model <- load_model("rf")
print(rf_model$parameters) # View RF parameters
#> parameter class label
#> 1 mtry numeric #Randomly Selected Predictors
# Load caret's SVM model
svm_model <- load_model("svmRadial")