Generic function for writing neuroimaging datasets to HDF5 format
Write a single NeuroVec object with clustering to HDF5
Write multiple NeuroVec objects with clustering to HDF5
Export an existing H5ParcellatedMultiScan object to a new HDF5 file
Export an existing H5NeuroVec object to a new HDF5 file
Export an existing H5NeuroVol object to a new HDF5 file
Write a LatentNeuroVec object to HDF5
Usage
write_dataset(x, ...)
# S4 method for class 'NeuroVec'
write_dataset(
x,
file,
clusters,
mask = NULL,
summary = FALSE,
summary_fun = mean,
scan_name = "scan_001",
compression = 4,
...
)
# S4 method for class 'list'
write_dataset(
x,
file,
clusters,
mask = NULL,
summary = FALSE,
summary_fun = mean,
scan_names = NULL,
compression = 4,
...
)
# S4 method for class 'H5ParcellatedMultiScan'
write_dataset(x, file, overwrite = FALSE, ...)
# S4 method for class 'H5NeuroVec'
write_dataset(x, file, overwrite = FALSE, ...)
# S4 method for class 'H5NeuroVol'
write_dataset(x, file, overwrite = FALSE, ...)
# S4 method for class 'LatentNeuroVec'
write_dataset(x, file, compression = 6, ...)
Arguments
- x
A LatentNeuroVec object
- ...
Additional arguments passed to as_h5
- file
Output HDF5 file path
- clusters
A ClusteredNeuroVol object defining spatial clusters
- mask
Optional LogicalNeuroVol mask (extracted from first element if not provided)
- summary
Logical, whether to summarize data by clusters (default: FALSE)
- summary_fun
Function to use for summarization (default: mean)
- scan_name
Name for the scan (default: "scan_001")
- compression
Compression level 0-9 (default: 6)
- scan_names
Character vector of scan names (auto-generated if not provided)
- overwrite
Logical, whether to overwrite existing file (default: FALSE)
Value
Invisible NULL or file path, depending on the method
Invisible NULL
Invisible NULL
Invisible file path
Invisible file path
Invisible file path
Invisible NULL
Examples
if (FALSE) { # \dontrun{
# Write full voxel-level data
write_dataset(nvec, file = "output.h5", clusters = cvol)
# Write summarized data (mean per cluster)
write_dataset(nvec, file = "output_summary.h5", clusters = cvol, summary = TRUE)
# Use median for summarization
write_dataset(nvec, file = "output_median.h5", clusters = cvol,
summary = TRUE, summary_fun = median)
} # }
if (FALSE) { # \dontrun{
# Write multiple scans
scans <- list(nvec1, nvec2, nvec3)
write_dataset(scans, file = "multi_scan.h5", clusters = cvol)
# With custom names and summary
write_dataset(scans, file = "multi_summary.h5", clusters = cvol,
summary = TRUE, scan_names = c("rest", "task1", "task2"))
} # }
if (FALSE) { # \dontrun{
# Export existing H5 object to new file
h5_obj <- H5ParcellatedMultiScan("existing.h5")
write_dataset(h5_obj, file = "copy.h5")
} # }
if (FALSE) { # \dontrun{
# Write latent representation
write_dataset(latent_nvec, file = "latent.h5")
} # }