Robust space-time smoothing (Huber or Tukey) + anisotropic TV
stv_robust4d.RdApplies a robust data term (Huber or Tukey) with spatial/temporal TV priors, optionally with motion-aware temporal weights.
Usage
stv_robust4d(
vec,
lambda_s = 0.8,
lambda_t = 0.2,
loss = c("huber", "tukey"),
delta = NULL,
cthresh = NULL,
alpha = 1,
temporal_weights = NULL,
motion_params = NULL,
sigma_m = 0.5,
iters = 35L,
mask = NULL,
tau = NULL,
sigma = NULL,
theta = 1
)Arguments
- vec
4D fMRI array or `NeuroVec`.
- lambda_s
Spatial TV weight.
- lambda_t
Temporal TV weight.
- loss
Robust loss: `'huber'` or `'tukey'`.
- delta
Huber threshold; if `NULL`, derived from noise.
- cthresh
Tukey threshold; if `NULL`, derived from noise.
- alpha
Tukey shape parameter.
- temporal_weights
Optional length-(T or T-1) temporal edge weights.
- motion_params
Optional motion regressors to derive temporal weights.
- sigma_m
Motion weight scale.
- iters
Iterations for the robust solver.
- mask
Optional 3D logical/0-1 mask.
- tau
Algorithm primal step size; if `NULL`, a sensible default is used.
- sigma
Algorithm dual step size; if `NULL`, a sensible default is used.
- theta
Over-relaxation parameter.