Principal Components Analysis (PCA)
pca.Rd
Compute the directions of maximal variance in a data matrix using the Singular Value Decomposition (SVD).
Arguments
- X
The data matrix.
- ncomp
The number of requested components to estimate (default is the minimum dimension of the data matrix).
- preproc
The pre-processing function to apply to the data matrix (default is centering).
- method
The SVD method to use, passed to
svd_wrapper
(default is "fast").- ...
Extra arguments to send to
svd_wrapper
.
See also
svd_wrapper
for details on SVD methods.