Dispatch to the appropriate method for transforming new data according to a specific parametric basis.
Usage
# S3 method for class 'ParametricBasis'
predict(object, newdata, ...)
# S3 method for class 'Standardized'
predict(object, newdata, ...)
# S3 method for class 'Poly'
predict(object, newdata, ...)
# S3 method for class 'BSpline'
predict(object, newdata, ...)
# S3 method for class 'Ident'
predict(object, newdata, ...)
# S3 method for class 'Scale'
predict(object, newdata, ...)
# S3 method for class 'ScaleWithin'
predict(object, newdata, newgroup, ...)
# S3 method for class 'RobustScale'
predict(object, newdata, ...)Examples
# Create polynomial basis from training data
train_x <- 1:10
poly_basis <- Poly(train_x, degree = 2)
# Predict on new data
new_x <- c(5.5, 7.3, 11.2)
predict(poly_basis, new_x)
#> 1 2
#> [1,] 0.0000000 -0.3590352
#> [2,] 0.1981735 -0.2180323
#> [3,] 0.6275493 1.0549106
# Create scaling basis
train_vals <- c(10, 20, 30, 40, 50)
scale_basis <- Scale(train_vals)
# Apply same scaling to new data
new_vals <- c(15, 25, 35)
predict(scale_basis, new_vals)
#> z_train_vals
#> [1,] -0.9486833
#> [2,] -0.3162278
#> [3,] 0.3162278