Skip to contents

Creates a list of advanced parameters for the task_hatsa function.

Usage

task_hatsa_opts(
  lambda_blend_value = 0.15,
  k_gev_dims = 10,
  row_augmentation = TRUE,
  residualize_condition_anchors = FALSE,
  omega_weights = NULL,
  omega_mode = c("fixed", "adaptive"),
  reliability_scores_list = NULL,
  scale_omega_trace = TRUE,
  alpha_laplacian = 0.93,
  degree_type_laplacian = c("abs", "positive", "signed"),
  k_conn_pos = 10,
  k_conn_neg = 10,
  k_conn_task_pos = 10,
  k_conn_task_neg = 10,
  similarity_method_task = "pearson",
  W_task_helper_func = NULL,
  n_refine = 5,
  check_redundancy = TRUE,
  redundancy_threshold = 0.45,
  residualize_k_conn_proj = 64,
  residualize_k_conn_labels = 10,
  gev_lambda_max = 0.8,
  gev_epsilon_reg = 1e-06,
  parcel_names = NULL
)

Arguments

lambda_blend_value

Numeric `lambda` in `[0,1]`. Weight for `L_task` in blend. Default 0.15.

k_gev_dims

Integer, requested dimension for GEV patches. Default 10. Used if `task_method == "gev_patch"`.

row_augmentation

Logical. If `TRUE`, add projected task features to anchor matrices for GPA refinement. Requires suitable `task_data_list`. Default `TRUE` if suitable data provided.

residualize_condition_anchors

Logical. If `TRUE` and `row_augmentation` is `TRUE`, residualize projected task anchors against parcel anchors. Default `FALSE`.

omega_weights

List specifying fixed weights for weighted Procrustes (e.g., `list(parcel = 1.0, condition = 0.5)`). Used if `row_augmentation=TRUE` and `omega_mode == "fixed"`. Defaults handled by `solve_procrustes_rotation_weighted`.

omega_mode

Character string: `"fixed"` or `"adaptive"`. Controls weighting in GPA. Default `"fixed"`.

reliability_scores_list

List (parallel to `subject_data_list`), each element a numeric vector of reliability scores (e.g., R^2) for task data (length `C`). Used if `omega_mode == "adaptive"`.

scale_omega_trace

Logical. Whether to rescale weights in weighted GPA so trace equals total anchors. Default `TRUE`.

alpha_laplacian

Numeric, laziness parameter for graph Laplacians (`L = I - alpha D^-1 W`). Default 0.93.

degree_type_laplacian

Character string (`"abs"`, `"positive"`, `"signed"`). Type of degree calculation for Laplacian. Default `"abs"`.

k_conn_pos

Integer >= 0. k-NN sparsification for positive edges in `W_conn`.

k_conn_neg

Integer >= 0. k-NN sparsification for negative edges in `W_conn`.

k_conn_task_pos

Integer >= 0. k-NN sparsification for positive edges in `W_task`.

k_conn_task_neg

Integer >= 0. k-NN sparsification for negative edges in `W_task`.

similarity_method_task

Character string or function. Method to compute similarity for `W_task` (e.g., "pearson", "spearman"). Default "pearson".

W_task_helper_func

Function. The specific function to compute `W_task` (e.g., `compute_W_task_from_activations`, `compute_W_task_from_encoding`). If `NULL`, attempts to infer based on `task_data_list` structure (currently assumes activations `C x Vp`). Default `NULL`.

n_refine

Integer >= 0. Number of GPA refinement iterations.

check_redundancy

Logical. If `TRUE`, check correlation between `W_conn` and `W_task`. Default `TRUE`.

redundancy_threshold

Numeric. Spearman rho threshold for triggering `W_task` residualization. Default 0.45.

residualize_k_conn_proj

Integer. Number of `L_conn` eigenvectors to project `W_task` out of. Default 64.

residualize_k_conn_labels

Integer. k-NN value for re-sparsifying `W_task_res` after residualization. Default 10.

gev_lambda_max

Numeric. Max GEV eigenvalue `lambda` to retain for patches. Default 0.8.

gev_epsilon_reg

Numeric. Small regularization for `L_conn` in GEV. Default 1e-6.

parcel_names

Optional character vector of parcel names. If `NULL`, names like "P1", "P2"... are generated.

Value

A list of options to pass to the task_hatsa function.