Skip to contents

Status as of: December 2024
Overall Completion: ~95% (All core functions implemented, needs polish for release)


🎯 CURRENT STATE ASSESSMENT

βœ… COMPLETED COMPONENTS (100%)

All critical path functions are fully implemented and tested:

  1. βœ… compute_subject_connectivity_graph_sparse() - 73 tests passing
  2. βœ… compute_graph_laplacian_sparse() - Fully tested
  3. βœ… compute_spectral_sketch_sparse() - Working with RSpectra
  4. βœ… misalign_deg() - Exported and functional
  5. βœ… solve_gev_laplacian_primme() - 12 tests passing

Test Suite Status: 514 tests PASSING, 0 FAILING βœ…

⚠️ ISSUES REQUIRING ATTENTION

CRITICAL: Missing Dependencies in DESCRIPTION

The package fails R CMD check due to missing dependencies: - Missing from Imports: PRIMME, RSpectra, future.apply, ggplot2, methods, vegan - Optional packages not declared: MASS, shapes, ggrepel

Package Metadata Issues

  • DESCRIPTION placeholders: Title and Description fields contain boilerplate text
  • Version: Still at 0.0.0.9000 (pre-release)
  • Author ORCID: Placeholder text β€œYOUR-ORCID-ID”

Code Quality Issues

  1. Inefficient Implementations:
    • Dense correlation matrix computation with only a size guard (V_p^2 > 1e8)
    • Multiple forceSymmetric() + drop0() patterns could be optimized
    • No chunking for large correlation matrices
  2. Hardcoded Values:
    • alpha = 0.93 (lazy random walk parameter)
    • lambda_max_thresh = 0.8 (GEV filtering)
    • epsilon_reg_B = 1e-6 (regularization)
    • Various tolerance values (1e-8, 1e-9)
  3. Inconsistent Interfaces:
  4. Error Handling:
    • Missing input validation in some internal functions
    • Inconsistent NA/NaN handling
    • Some functions silently return empty results
  5. Documentation Gaps:
    • Missing roxygen2 docs for some internal functions
    • TODO comments in 2 locations
    • Some examples missing or incomplete

Deprecation Warnings

  • Matrix package: as(<dsCMatrix>, "dgCMatrix") deprecated
  • testthat: context() deprecated
  • Import conflict: PRIMME::eigs_sym vs RSpectra::eigs_sym

πŸ“‹ IMMEDIATE PRIORITIES (1-2 days)

TICKET FIX-001: Update DESCRIPTION File

  • Priority: πŸ”΄ CRITICAL

  • Tasks:

    # Add to Imports:
    Imports: 
        Matrix,
        RANN,
        stats,
        multivarious,
        expm,
        RSpectra,
        PRIMME,
        future.apply,
        ggplot2,
        methods,
        vegan
    
    # Add to Suggests:
    Suggests:
        testthat (>= 3.0.0),
        knitr,
        rmarkdown,
        MASS,
        shapes,
        ggrepel
  • Update metadata: Proper Title, Description, Version (0.1.0)

  • Estimated Time: 30 minutes

TICKET FIX-002: Resolve Import Conflicts

  • Priority: 🟑 HIGH
  • Issue: Both PRIMME and RSpectra export eigs_sym
  • Solution: Use explicit namespace calls or choose one package
  • File: NAMESPACE and relevant R files
  • Estimated Time: 1 hour

TICKET FIX-003: Fix Deprecation Warnings

  • Priority: 🟑 HIGH
  • Tasks:
    • Replace as(<dsCMatrix>, "dgCMatrix") with as(., "generalMatrix")
    • Update testthat context() to describe()
    • Fix roxygen2 @importFrom errors
  • Estimated Time: 2 hours

πŸ”§ OPTIMIZATION OPPORTUNITIES (Week 1)

TICKET OPT-001: Efficient Sparse Correlation

  • Current: Dense correlation for all parcels
  • Proposed: Implement chunked or approximate methods for large V_p
  • Benefits: Memory efficiency for V_p > 1000
  • File: R/spectral_graph_construction.R

TICKET OPT-002: Parameterize Hardcoded Values

  • Create options/config system for:
    • Tolerance values
    • Default parameters (alpha, lambda_max_thresh, etc.)
    • Eigenvalue thresholds
  • Consider: Package-level options via options()

TICKET OPT-003: Standardize Interfaces

  • Harmonize parameter names across functions
  • Create consistent message system
  • Standardize error handling patterns

πŸ“Š QUALITY METRICS

Component Implementation Tests Documentation Quality
Core Algorithms βœ… 100% βœ… 514 tests ⚠️ 90% ⚠️ 85%
S3 Methods βœ… 100% βœ… 100% βœ… 95% βœ… 95%
Helpers/Utils βœ… 100% ⚠️ 80% ⚠️ 85% ⚠️ 80%
Vignettes βœ… 100% N/A βœ… 100% βœ… 100%

πŸš€ PATH TO CRAN RELEASE

Week 1: Critical Fixes

  1. Fix DESCRIPTION and dependencies (FIX-001)
  2. Resolve import conflicts (FIX-002)
  3. Fix deprecation warnings (FIX-003)
  4. Run full R CMD check clean

Week 2: Polish & Optimization

  1. Implement efficiency improvements (OPT-001)
  2. Parameterize hardcoded values (OPT-002)
  3. Standardize interfaces (OPT-003)
  4. Complete missing documentation

Week 3: Release Preparation

  1. Version bump to 1.0.0
  2. NEWS.md file creation
  3. CRAN submission checklist
  4. Final testing on multiple platforms

πŸ’‘ TECHNICAL DEBT & FUTURE IMPROVEMENTS

  1. DTW Support: Currently placeholder in connectivity computation
  2. Memory Optimization: Better handling of large-scale problems
  3. Parallel Processing: More extensive use of future.apply
  4. GPU Acceleration: Consider for eigendecomposition
  5. Approximate Methods: For very large datasets (V_p > 10,000)

✨ SUMMARY

The HATSA package is functionally complete with excellent test coverage. The main barriers to release are: 1. Missing package dependencies in DESCRIPTION 2. Minor code quality issues 3. Documentation polish

Estimated time to production-ready: 1-2 weeks of focused development

Recommendation: Fix critical dependency issues first (1-2 days), then focus on optimization and polish for CRAN submission.