Reads in fmriprep confound tables for one or more subjects.
Usage
# S3 method for class 'bids_project'
read_confounds(
x,
subid = ".*",
task = ".*",
session = ".*",
run = ".*",
cvars = DEFAULT_CVARS,
npcs = -1,
perc_var = -1,
nest = TRUE,
...
)
Arguments
- x
A
bids_project
object- subid
Subject ID regex
- task
Task regex
- session
Session regex
- run
Run regex. If the run identifier cannot be extracted from the filename, the run value defaults to "1".
- cvars
The names of the confound variables to select. Defaults to
DEFAULT_CVARS
. Canonical names such as"csf"
are automatically mapped to any matching column names found in the dataset usingCVARS_ALIASES
.- npcs
Perform PCA reduction on confounds and return
npcs
PCs.- perc_var
Perform PCA reduction to retain
perc_var
% variance.- nest
If TRUE, nests confound tables by subject/session/run.
- ...
Additional arguments (not currently used)
Examples
# \donttest{
# Try to load a BIDS project with fMRIPrep derivatives
tryCatch({
ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)
# Read confounds with canonical names (automatically resolve to actual columns)
conf <- read_confounds(proj, cvars = c("csf", "framewise_displacement"))
# Read confounds for specific subjects and tasks
conf_sub <- read_confounds(proj, subid="01", task="balloonanalogrisktask")
# Get confounds as flat tibble
conf_flat <- read_confounds(proj, nest=FALSE)
# Clean up
unlink(ds_path, recursive=TRUE)
}, error = function(e) {
message("Example requires derivatives dataset with confounds: ", e$message)
})
#> Example requires derivatives dataset with confounds: participants.tsv is missing
# }